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I. INTRODUCTION AND METHODOLOGY

The notion of orbital formation flying has been known for some time; recent budget
reductions have prompted renewed interest in this technology. The National Aeronautics and
Space Administration (NASA) Cross Enterprise Technology Development Program
(CETDP) is developing critical space technologies that enable innovative and less costly
missions[1]'. Thus efforts within the Distributed Spacecraft thrust area (TA) represent
technological developments which will support NASA’s ability to accomplish its task by
surpassing traditional approaches to utilizing space and the limitation inherent to them, by
enhancing the ability of new and emerging technologies, and sciences, and further
accomplishing the challenges of looking closer at the world and understanding the processes
which define in composition and evolution, looking deeper into the universe to explore
neighboring planets, galaxies and to seek an understanding of their origin. The trend is to
develop technology that will allow a distributed network of autonomous spacecraft to act
collaboratively as a singlg collective unit. An advantage of flying multiple, small, low-cost
spacecraft in formation is that this provides correlated instrument measurements formerly
possible only by flying many instruments on a single large platform [2]. Distribution of
components on a number of satellites allows the advantage that a single component failure
results in the replacement of a small, cheap spacecraft and not an abort of the mission. Areas
of formation flying application in remote sensing include stereographic

viewing,interferometry, conducted by DeCou [3], and synthetic aperture synthesization for

"Numbers in brackets designate References at end of this report.




radar and other applications conducted by Kong, Miller and Sedwick [4-5]. DeCou
discussed the basic orbital configuration for interferometry missions and the thrust
requirements for station keeping of a two-satellite formation, while Kong, et al., discussed
synthesization | of aperture, using orbital dynamics which included environmental
perturbations such as non-spherical Earth effects, atmospheric drag, solar radiation pressure
and magnetic field interaction. NASA has suggested at least three formations of small
spacecraft in low earth orbit (LEO) for scientific data collection. Among these are:

(1)  An “Auroral Cluster” system of up to four spacecraft in formation where the main
objective would be to measure for the first time the curl of the Earth’s magnetic field
vector. It is anticipated that this mission would involve separation distances from a
few meters and up to 200 km over a year’s interval. For the present study, 500 km
will be considered the nominal separation distance.

(2) A second mission would involve two spacecraft in the same orbit, one following the
other, as closely as 5 km, then moving away to distances of % to 'z orbit.
Instrumentation on-board would correlate distance measurements in the atmosphere
over a wide range of separation ranges.

(3) A third mission dedicated to space based interferometry would deploy three
spacecraft flying precise “zero-drag” trajectories with positional accuracy of the order
of cm, with the objective of measuring gravity waves under zero-drag conditions. For
this mission the interferometry base line set up by the formation would be of a few
km. with the main disturbances attributed to the effects of solar radiation pressure.

(4) In addition to the three proposed Low Earth Orbit (LEO) missions, another



interesting concept, currently in the planning phase by NASA Goddard Space Flight

Center (GSFC) is: _

A solar stereo mission involving two spacecraft in heliocentric orbit, one behind the .

Earth and the second in front of the Earth with a separation distance of 1

astronomical unit (a.u.) The objective would be to measure the solar corona mass

ejection from different vantage points within a prescribed base-line accuracy.

(5) Inaddition to these proposed scientific uses for orbital formation flying, clusters of
spacecraft would be the core of the IRIDIUM, Alcatel, Globalstar, Ellipso and other
proposed orbital communication systems of the future. Depending on the application
the number of spacecraft could vary from a handful up to 50 or 100s, with separation
distances from the order of km to thousands of km with a wide range of orbital
altitudes.

A search of technical publications, technical memoranda, and other reports pertaining
to this subject has been conducted. The majority of the literature surveyed on Constellation
Station Keeping, comes from reports of completed research or major phases of research
presented in NASA programs which includes extensive data or theoretical analyses.
Furthermore, these reports include compilations of significant scientific and technical data
and information deemed to be of continuing value. Other reports are mentioned and
referenced throughout this document.

An early study by Walker presents a systematic approach to the analysis of coverage
of the Earth by means of circular orbit systems [6]. The study ensured that every point on the
Earth’s surface can always see at least one satellite (or two satellites for double coverage)
above some minimum elevation angle. It is shown that five or six (properly phased)
geosynchronous altitude satellites can provide (continuous worldwide) single coverage, and
seven or nine satellites double coverage; and a generalized approach to such coverage
assessments is presented. Walker also recognized that low Earth orbit (LEO) systems had
unique properties and advantages, and he proposed and analyzed a 48 satellite system
concept which became the basis of the Loral Globalstar system [7].

A recent paper presents the Goddard Space Flight Center (GSFC) closed-loop control



method to fly in either constellations or formations through the use of an autonomous closed
loop three-axis navigation control and innovative orbit maintenance support [8]. An
operational control method for maintenance of constellation formation flying is developed
in this paper. Examples were taken from the Earth Observing-1 (EO-1) spacecraft that is part
of NASA’s New Millennium Program (NMP) and from the proposed Earth System Science
Program Office (ESSPO) constellations. Results can be used to determine the
appropriateness of constellations and formation flying for a particular case as well as the
operational impacts. After constellation and formation analysis was completed,
implementation of a maneuver maintenance strategy became the driver.

Brochet et al present a new method to solve the linear station keeping optimization
problem [9]. Several optimization models were proposed for the problem of resetting drifting
satellites to ensure desired coverage to include those satellites that may fail during the life
of the constellation. Each model consists in minimizing the total fuel consumption due to
maneuvers. As in all station keeping models, the objective is to minimize the total fuel
consumption associated with satellite maneuvers. The minimization takes into account the
trajectory of each satellite and constraints on their relative positions. An additional constraint
is introduced to limit the number of satellites that can be simultaneously controlled. All
satellites cannot thrust simultaneously. This is a Mixed Integer Non-Linear Programming
(MINLP) optimization problem, containing Boolean and real variables. Boolean variables
determine which satellite can be maneuvered at each step, and the real variables correspond
to the thrust value of the maneuvers. One has to solve the optimization station keeping
problem or find these values for each cycle. This problem is split on the basis of the
generalized Bender’s decomposition method (projection on the Boolean variable space) [10].
(1) The first model is linear and differential (relative satellite positions). The subproblem
(calculation of the impulsive thrusts) is solved by a dual approach that finds the solution in
a finite number of steps. (2) The second model is nonlinear and non-differential. It represents
the real problem without simplifications. The resolution of the subproblem is done using a
direct search approach (Hook and Jeeves algorithm [11]) to determine real variables in the

subproblem. The objective is to minimize the total fuel consumption of each satellite subject




to (a) a coverage constraint (distance between two satellites |Ad| must not exceed a threshold
®), and (b) three remaining operational constraints.

In conclusion[9] for the two models: Linear and differential optimization problem
and Nonlinear and non-differential station keeping problem, the method presented is very
efficient since it can provide the global minimum (optimal maneuvers needed to ensure a
good coverage) just by resolving a system of linear equations and can be applied to every
station keeping problem. The second model can solve more complicated cases (nonlinear
mixed variables problem). It is more precise than the linear one. It allows for various
constraints on position (i.e., relative or absolute positions of satellites), and various
definitions of the fuel consumption. This model can also be used as a first approach to
calculate optimal maneuvers needed to replace a failed satellite. However, the global
problem, including the choice of the spare satellite, needs to be stated.

The flying of spacecraft in constellations and formations will permit the accurate
determination of three - dimensional and time - varying phenomena and will make it possible
to distinguish between spatial and temporal variations. However, constellations and
formation flying impose additional complications on orbit selection and orbit maintenance,
especially when each spacecraft has its own orbit or science requirements. Every object in
orbit follows approximately the second Keplerian law [12]. Therefore, there is a natural
tendency of separations. To maintain constant separation distance between pairs of spacecraft
is not an easy problem if the orbits are elliptical. Hughes and Hall [13] investigated an
optimization scheme to determine the best configuration for a four spacecraft formation in
a circular orbit. Ulybyshev [14] used the linear-quadratic regulator technique for feedback
control to maintain station keeping of a circular orbiting constellation. Carpenter [15]
suggested a distributed satellite formation, modeled as an arbitrary number of fully connected
nodes in a network, for an equatorial circular Keplerian orbit, could be controlled using a
decentralized controller framework. Cao, Modi, et. al., explored the possibility of using
separately and a combination of Feedback Linearization Technique (FLT) and Linear-
Quadratic Regulator (LQG) to study the control theory of an elastic space platform-based
flexible manipulator with four links, two free to slew while the other two were permitted to



deploy [16]. Chao, Pollard, and Janson [17] described a method for determining cluster
orbital elements and the relative geometry and dynamics of satellites under a two-body force
field with the secular Earth’s oblateness J, influences( Because the term J, will be referred
to often in this document, the reader is referred to the derivation, in Battin[18]. They also
examined the disruption of the formation due to natural perturbations and the feasibility of
a formation-keeping strategy. Smith, Proulx, et al. [19], investigated the use of genetic
algorithms to generate optimal station keeping strategies, by constraining the orbit of an
Ellipso™ Borealis satellite and developed the minimum fuel optimal burn strategy by
minimizing the fuel required to maintain the orbit for a given period of time. Sabol, Burns
and McLaughlin[20] used the Draper Semianalytic Satellite Theory (DSST) to study several
satellite formation flying designs and their evolution through time. The DSST equations of
relative motion are used in a manner similar to the BG14 propagator{21]. The DSST
equations are derived for Keplerian two body dynamics (like the Hill’s equations, or the
better known Clohessy Wiltshire (CW) [22] equations, which are a special form of Hill’s
equations). BG14 is a high precision orbit propagator simulation written by McDonnell
Douglas. The BG14 propagator takes into account the solar pressure, oblateness of the
Earth(up to 40x40) and air density variation with the Jacchia 70 (J70) model. The DSST
Semianalytic Theory can also be modified to include effects of oblateness, drag, etc. To be
more exact, all the references cited , up to this point, relate to these Hill’s equations or the
Clohessy-Wiltshire (CW) set of equations, these have been used primarily to analyze modern
guidance and rendezvous problems. These include nonlinear error analysis, station keeping,
targeting, surveillance and satellite clustering. These equations have severe limitations and
drawback. The CW equations are of a linear nature with constant coefficients, and describe
the coasting terminal motion of the ferry vehicle relative to the target, when the target is in
a circular orbit. The main limitation of CW equations is that the relative gravitational
influence is expanded to only first order terms in the ratio of separation distance to orbital
radius (p/r) ending up with a fast growing error term as the probe moves away from the
station or target.

It may be convenient to use the not so well-known Tschauner and Hempel equations



[23]. These equations are sets of linear equations which resemble the CW equations in their
derivation and describe the motion of a spacecraft near a satellite in an arbitrary elliptic orbit
relative to a rotating orthogonal coordinate frame fixed in the satellite. Tschauner and
Hempel found complete solutions for elliptical orbits in terms of the eccentric anomaly.
Tschauner followed this article with two others [24,25]. It was a considerable task to verify
the results, not solely due to the fact that the articles are written in German. Carter and Humi
[26,27] applied these equations to more general Keplerian orbits and later Carter and
Brient[28,29,30] investigated impulsive or thrust maneuvers using these equations. A
complete search revealed only an outline of the derivation of the Tschauner and Hempel
equations; therefore, a complete derivation is based on Van der Ha and Mugellesi [31].

It will soon become apparent, that a multiple set of disciplines is needed to treat
the problem considered in this report. These include:

. Physics - Orbital Mechanics

. Engineering - Linear and Nonlinear Dynamic Programming and Control

Theory

. Mathematics - Differential Equations and Mathematical Modeling

This research consists of a station keeping stage and a deployment stage. The totality is

summed up in five chapters. Inactuality, the order of events is a deployment stage followed

by station keeping. However, for purposes of this research, it will be assumed that the
desired configuration has been reached; therefore, station keeping will be analyzed first, and
deployment will be addressed in the later part of this document. The organization of this
report is as follows. Following the Introduction and Methodology (Chapter One), is Chapter
Two. Chapter Two deals with the Selection of the Strawman Configurations and
Comparison with the ESA Auroral Cluster Configuration and the Proposed NASA
Multiscale System. Chapter Three, Station Keeping Maneuvers, consists of two parts. The
first part involves, a detailed study of station keeping of spacecraft using the BG14
propagator, where instantaneous impulses were conducted at perigee and apogee to cause the

in-plane shift of the line of apsides. Secondly, the study of station keeping in a co-planar non-

Keplerian orbit is conducted based on the Tschauner-Hempel equations of motion. Chapter
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4 deals with the deployment and@tation @eeping of spacecraft based on a Lyapunov function
control strategy. Although deployment is an important part of formation flying, this subject
apparently, until now, has received little attention. A preliminary study by Badesha, et al. :
[32] involves the deployment of six micro-satellites, one at a time, from a bus. At the
initialization state, the satellites fly in an along-track trajectory separated by nominal spacing.
The study entailed the development of a two-body (bus and satellite) relative motion
propagator based on the Clohessy-Wilshire equations with drag, from which the relative
motion of the micro-satellites is deduced. Their investigation did not result in an optimum
deployment strategy. Badesha is hopeful that information gained will be useful for future
studies invo}::ing n}immlzmg global fuel and cost. Other references pertaining to
deployment/Station Keeping can be found in Chapter 4 of this document.

As a background, control theory deals with the dynamic response of a system to
commands or disturbances. The translation of physical design objectives into a dynamical
system gives rise to the control problem. The key elements involved are:

. A dynamical system which is to be “controlled”

. A desired output or objective of the system
. A set of allowable (or admissible) “controls” (i.e., inputs)
. A performance functional, (or cost function) which measures the

effectiveness of a given “control action”
The notion of performance functional, performance index or cost function is no stranger to
physics. As a briefreview and motivation on this topic, recall the statement from Hamilton’s
principle for conservative systems in classical physics, “of all possible paths along which a
dynamical system may move from one point to another within a specified time interval
(consistent with any constraints), the actual path followed is that which minimizes the time
integral of the difference between the kinetic and potential energies.” Therefore, the cost

function or performance index is defined as the action

T .
J= IL(q,u)dt (1.1
0



where q = generalized coordinate vector (1.2)

u = g = generalized velocities (1.3)
U(q) = potential energy (1.4)
T(g,u) = kinetic energy (1.5)

L(q,u) = T(q,u)- U(q),the Lagrangian of the system (1.6)
Similarly, the general system dynamics are given by the physics of the problem and can

be represented as, x= f(x,u) (1.7

with
xeR" and ue R™ (1.8)

(superscript on f means it can in general be time-varying)
while the performance index ( P1)

1

1t
_ T T T
J--—2x Sx+-—-2 j(x Ox+ u Ru) (1.9)

to

J is defined over the interval of interest [i,N], where S is an n x n symmetric , positive
definite, constant matrix, Q is an n X n symmetric, positive definite, time-varying matrix and
R is an m x m symmetric time-varying positive definite matrix. R is to be fixed at the outset
by the designer and the positive definite requirement is to assure each element of u is
bounded. Although the above equations are shown for continuous-linear quadratic regulator
systems they can easily be set up for a discrete- linear quadratic regulator{14]. Distinctions
are noted when dealing with non-linear systems; as is the case when it is necessary to
construct a scheme that makes the system follow (or track ) a desired trajectory over some
time interval.

Control signals in physical systems are usually obtained from equipment which can

provide only a limited amount of force or energy. This necessitates placing restrictions or



constraints upon the set of controls which satisfy the constraints (set of admissible controls).
For most physical systems, the desired objective can be attained by many admissible inputs,
each of which results in a different response. Therefore, the best one needs to be selected.
This requires the use of a performance criterion (functional).

Linear programming is concerned with the science of decision and its application.
The concept of optimization is now well rooted as a principle underlying the analysis of
many complex decision or allocation problems. It offers a certain degree of philosophical
elegance that is hard to dispute, and it often offers an indispensable degree of operational
simplicity. Using this optimization philosophy, complex decision problems involving the
selection of values for a number of interrelated variables will be approached by focusing
attention on a single objective designed to quantify performance and measure the quality of
the decision. The one objective is maximized ( or minimized ) subject to the constraints that
may limit the selection of decision variable values {33,34,35]. Stated mathematically,
problems such as these belong to the calculus of variations or the Brachistochrone problem.

Optimal Control Theory (a means of determining or finding for a given process the
control that is best in some sense) was developed as a result of attempting to solve the
dynamics of classical systems which were no longer linear time - invariant; that is, those
systems whose components could no longer be adequately described by ordinary linear
differential equations with constant coefficients. It provides the means of combining linear
programming with control theory. It is a branch of applied mathematics and also of control
engineering. Methods for designing optimal control systems require sophisticated
mathematical tools. Linear Quadratic Regulator (LQR) theory [36] will play major roles in
the development of algorithms used in this research. Kluever and Tanck [37] investigated
a feedback control law for autonomous station keeping maneuvers based on the discrete
version of the linear Clohessy-Wiltshire equations of motion and the discrete time asymptotic
LQR. Tan, Bainum and Strong [38] investigated a nonlinear feedback control law, based on
a Lyapunov function, for maintaining separation distances between several spacecraft in a
coplanar elliptical orbit, by applying this function to the osculating orbital elements of the
daughter spacecraft. Typically, to solve a LQR problem, one begins by defining a

10



performance index to be optimized or the Hamiltonian function, such as

1
H= E(xTQx+ u'Ru)+ A"(Ax+ Bu)  (1.10)

where the state and costate equations are

cH
x=——= A+ Bu
% (1.11)
JH '
A=—=0x+ AT
ol %
and the stationarity condition, provided u is unconstrained is
cH
=—= Ru+ B} (1.12)
ou
accordingly u=-R'BT; (1.13)

so the optimal control séquence is determined if the costate sequence can be found. The

constraint or system equation is a recursion for the state x that develops forward in time,

while the costate equation is a recursion for A that develops backward in time. The

(fictitious) Lagrange multiplier is thus a variable that is determined by its own dynamical

equation, and it will be seen that the optimal controller is not causal.

Deployment of spacecraft is based on maneuvers from a “mother satellite.” In this
research two approaches are suggested:

(1)  Based on near Hohmann type transfer orbits where the impulses of the thrusters is
used to augment the energy required from the transient orbit to the final orbit and the
four spacecraft are deployed sequentially from the initial circular orbit with a small
time delay selected to correspond to the desired shift in the angle between the

11



semimajor axes of the orbits of the adjacent satellites. For the first spacecraft a single

impulse Hohmann transfer is required. For the remaining three a very small second

impulse would also be required at the second perigee position in the final elliptical
orbit. This method, described in Chapter 4, is based on the utilization of the least
maneuver energy.

(2)  Based on a solution to the nonlinear ( track a desired trajectory over time) two point
boundary value problem (TPBVP) following Pontryagin’s Principle[39,40]. The
TPBVP is evident by the state equation and the adjoint costate system, since the
boundary conditions required for solution are the initial state x, and the final costate
M - These problems are in general extremely difficult to solve. Implementation may
involve numerical techniques for solving TPBVP such as the quasilinearization or
shooting techniques.

The solution to two-point boundary value problems has been attempted in a variety
of methods, among them: Interpolation methods, variational methods, method of collocation,
Picard’s method, discrete methods, finite different methods, quasilinearization, and shooting
methods. The ‘shooting method’ and quasilinearization will be relied on to solve these
equations, mainly because of the familiarity in these two areas[41,42]. Quasilinearization
will be satisfied with the aid of recent advances in MATLAB. A summary of the two
techniques is listed below :

1. Quasilinearization. This method is applicable only to two-point boundary value
problems for systems of nonlinear ordinary differential equations. The original nonlinear
problem is replaced by a sequence of more easily solved linear problems whose solutions
converge under appropriate conditions to the solution of the original problem.

2. Shooting methods. This method takes its name from the situation in the two-point
boundary value problem for a single second order differential equation with initial and final
values of the solution prescribed. The initial slope is varied to give rise to a set of profiles
which suggest the trajectory of a projectile “shot” from the initial point. That initial slope
is sought which results in the trajectory “hitting” the target, the final value.

These methods may not be so well-known, mainly due to perhaps the mis-perception

12



that they lack a certain amount of elegance. The reader can be assured that these methods
contain all the mathematic rigor in development worthy of its place in pure and applied
mathematics [43,44,45,46]. “

In this report only the first approach to the deployment problem will be treated. The
two point boundary value problem approach(TPBVP), currently in progress, will be treated
in the second year final report.

13




II. SELECTION OF BASELINE (STRAWMAN) CONFIGURATION

A study was conducted of proposed NASA and ESA constellation configurations
which would measure and study upper atmospheric phenomena. The Auroral Cluster (Multi
scale) System, the Distance Measurement System, the Orbiting Interferometer System, as
suggested by NASA for LEO mission together with the Solar Stereo System in heliocentric
orbit were all considered as possible baseline or “strawman” configurations [47]. In addition
information was also obtained from the ESA web page on the proposed ESA Cluster mission
with the objective of determining physical processes involved in the interaction between the
solar wind and the magnetosphere by visiting key regions such as the polar cusps and the
magnetotail. Up to four Cluster spacecraft would map in three dimensions the plasma
structure contained in these regions. Simultaneous multi-point measurements would also
allow differential plasma quantities to be derived for the first time. Cluster’s main goal is to
study the small scale plasma structures in space and time in key plasma regions: solar wind
and bow shock; magnetopause; polar cusp; magnetotail; and the auroral zone. The
preliminary design of each cluster spacecraft would be based on spin stabilization at a
nominal rate of 15 rpm, with the in-orbit configuration characterized by two 5 m long
experiment radial booms, four 50m long experiment wire booms, and two axial
telecommunications antenna booms, with the spacecraft diameter of 2.9 m, height of 1.3 m,
dry mass of 550 kg, propellant mass of 650 kg, and payload mass of 72 kg [48].

After reviewing the candidate configurations for satellite constellations, the Auroral
Multiscale Mission (AMM) was chosen as a baseline or “strawman” model for this research.
The reason for this selection is that the AMM has the objective of upper atmosphere science,
and its configuration is relatively uncomplicated. A brief description and sketch of this
system is given in Fig.2.1 and Table 2.1. It is assumed that this relatively simple system
would not have autonomous navigation capability. Initially for this study the “strawman”
configuration would be based on four spacecraft in the same plane, principally along the orbit
track. The perigee altitude is selected to be 600 km, the apogee altitude is selected to be 8000
km. And the nominal separation distance between two adjacent satellites is taken to be 500
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Table 2.1

Strawman Configuration

Mission Multi-point 3-dimensional data collection of auroral phenomena

Orbit 600%8000 km, 83° inclination*

Launch Vehicle Taurus (2110 vehicle), Insertion Mass of 465.5 kg, argp=203.1°

Spacecraft Size 40 inch diameter (across flats)

Spacecraft Mass 90 kg each

Science Payload Ton/Electron spectrometer, UV Auroral Imager, Magnetometer, Electric
Fields (3-axis)

Position Knowledge GPS, Knowledge to 100 meters (3 sigma)

Attitude Knowledge 0.01° Star Tracker (referenced to magnetometer), star-tracker implementa-

tion. Spinning sun-sensor / magnetometer provides coarse attitude.

Power Solar array capability: 40 watts orbit average power
Energy Storage: Dual IPACS Flywheel momentum bias system used for
both power and attitude control

*83 degrees is the proposed inclination angle for the AMM. To simplify the problem
and calculations for initial positions/velocities components, it is easier to assume i =0, which

has been done in this repbrt.
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H1.. STATION KEEPING MANEUVERS
3.1 In Plane Station Keeping Based on Shift of Line of Apsides

_———_ V=8.771 km/s Following and
251 32’/ >\ N 1\ expanding on the article by
2511 9./ ¢ //‘/ \\:\ Tan, Bainum, and Strong
/ , / Pengee [49], where it was noted

| .
Apogej\ -\\ Earth //51728 that \ivxthout any
/ }j perturbation or any control

in a nominal Keplerian

V=4, 256 kmls\/ 516 74 orbit, given the velocity at

15.66 km. perigee and  separation

distance, then one would

Fig. 3.1.1 Variable Velocities & Phase Distances  achieve near apogee the

separations shown in

Fig.3.1.1. From Fig.3.1.1 it is seen that the separation distances at perigee are more than

twice the separation distances at apogee. This is a direct consequence of Kepler’s law of

equal areas being swept out in equal time by the radius from the Earth to the particular

spacecraft. To maintain constant separation distance in such an orbit, one scenario would

be based on the necessity to correct the orbit continuously; the tremendous amount of energy
required makes this strategy unfeasible.

A novel idea for implementation of the separation distances for the AMM mission
was proposed in Ref [49] and is further explained in this section. If there are two satellites
in a constellation, the first satellite is appointed as a reference satellite, or mother satellite.
The semi-major axis of the orbit of the second satellite should be shifted by a very small

angle ( something like 1°) with respect to the orbit of the mother satellite in order to achieve
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the approximately constant separation distance (Fig.3.1.2). The propulsive maneuvers
required for such a separation can be calculated based on Lagrange’s equations for impulsive
thrust [50], and is presented in the Section 3.5. If there are two satellites flying in the orbits
shown as Fig.3.1.2, both co-planar and, in the counter clockwise direction, at exactly the

same time that they arrive at their

/—\ perigees and apogees, respectively,
the distance between the two

" e — /\ satellites is defined as the geometric
/ Ve r > " ) . .
/ // /,y\"/ \\ distance, roughly the distance caused
Sat / / Earth \ "
% : ,/ - -z / \ by the shift of the semi-major axis of
| ’// \ y - .. . . .
y a < / / the orbit; if the satellites are flying in
’/\ s N //
|\ Py ; exactly the same orbit (shown in
;\ N P ye e 4 . .
\ :;\( bit of S - // Fig.3.1.1), the distance between the
Aty -Urbnt o . o
SALL < yd adjacent satellites is defined as the

\W phase distance, i.e . the distance

Fig. 3.1.2 Angle Between Orbits of Two SAT accounted for the time in which the
second satellite will reach the mother

satellite’s current position. From Fig.3.1.2, it is seen that the geometric distance at the
perigees is smaller than the one at the apogees. The strategy here is that if the phase distance
is compensated by the geometric distance, then the resulting separation distance between the
adjacent satellites is maintained to be essentially constant. The details of the calculation are
presented as follows:

From Fig.3.1.2, if the angle between the two semi-major axes is a, the distances
between satellites 1 and 2 at perigee and apogee (the geometric distances) are

2(R + perigee altitude)Sin(a/2) and 2(R + apogee altitude)Sin(a/2)

respectively, where R is the radius of the Earth. Let the phase distances at perigee and apogee
be Pp and Pa, respectively (Fig 3.1.1), We try to make the resulting distance at apogee the
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same as the one at perigee, e.g. 500 km. i.e.

2(R+perigee aItitude)sin(%)+Pp = 500 (3..1.1)
2(R+apogee altitude) sin(%) +Pa = 500 (3..1.2)
From Fig.3.1.1, it is noticed that
Pp _ 51728 (3.13)
Pa  251.13 o

The solution of equations (3.1.1)-(3.1.3) is a =1.34118979436401 degree. Pp=336.626 km,
Pa=163.426 km. That means, satellite 2 arrives at its own perigee (or apogee) 38.396 seconds
later than satellite 1 does. Note the ratio defined as Pp/Pa has a value of 2.05980688507.
The term ratio will be used extensively in the parametric studies, section 3.4 ( Table 3.4.1
(a) and (b)).

3.2 Verification With Orbital Dynamics Simulation Software

It is the intent of this preliminary treatment to illustrate the advantage of the in-plane
station keeping based on the (initial) shift of the line of apsides between a mother and
daughter spacecraft An example of the constellation in an orbit described above, with
separation distance of 500 km., is now given. The simulation is performed by MATLAB for
a little more than half an orbit and BG14 [21] for longer time response. BG14 requires
precision orbital calculations, based on orbital mechanics, to be used in part as its
Initialization Phase. Simulation results are identical, as shown in Table 3.2.1 and Figure
3.2.1(a), respectively.
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Table 3.2.1.

Time History of Distance between Adjacent Satellites

Tsec | Dkm [ Tsec | Dkm | Tsec | Dkm | Tsec | Dkm | Tsec | Dkm | Tsec | Dkm

* 500.0 } 1152 | 4829 | 2323 | 477.7 | 3494 | 488.0 | 4646 | 497.6 | 5760 | 499.8

96 499.9 | 1248 | 4814 | 2419 | 4782 | 3590 | 489.0 | 4742 | 498.1 | 5856 | 499.5

192 499.3 | 1344 | 480.2 | 2515 | 4789 | 3686 | 489.9 | 4838 | 498.5 | 5952 | 499.3

288 498.4 | 1440 | 479.1 | 2630 | 479.7 | 3782 | 490.9 | 4934 | 498.9 | 6048 | 4989

384 497.1 | 1550 | 478.1 | 2726 | 480.5 | 3878 | 491.8 | 5030 | 499.3 | 6144 | 498.5

480 495.6 | 1651 | 477.5 | 2822 {4814 | 3974 | 492.6 | 5126 | 499.5 ]| 6240 | 498.1

576 493.8 | 1747 | 477.0 | 2918 | 4822 | 4070 | 493.5 | 5222 | 499.8 | 6336 | 497.6

672 4919 | 1843 | 476.8 | 3014 | 483.2 | 4166 | 4943 | 5318 | 4999 | 6432 | 497.0
768 490.0 | 1939 | 476.7 | 3110 | 484.1 | 4262 | 495.0 | 5414 | 500.0 | 6528 | 496.4

864 488.1 | 2035 | 476.7 | 3206 | 485.1 | 4358 | 495.7 | ** 500.0 | 6624 | 495.7

960 486.2 | 2130 | 476.9 | 3302 | 486.1 | 4454 | 496.4 | 5568 | 500.0 | 6720 | 495.0

1056 | 484.5 | 2227 | 4772 | 3398 | 487.0 | 4550 | 497.0 | 5664 | 499.9 | 6816 | 494.3

T is the time from the perigee, D is the distance between adjacent satellites, * is the perigee, T=0;
** is the apogee, T=5490.7 sec. from perigee.

Without perturbations, such as the atmosphere drag, flatness of the Earth, the effect
of the magnetic fields of the Earth, the perturbations from the Moon, the Sun and the planets,
and so on, the resulting separation distance will be kept essentially constant forever; Fig
3.2.1(b), over a 30 day duration, gives credence to this notion. The energy expended is only
to be used to compensate for these relatively small perturbations. According to this design,
significant control energy can be saved while maintaining relatively constant separation
distances between adjacent satellites in an elliptical orbit. In addition, the control logic and
its implementation for constant separation distance within a constellation are much easier
than for the case of time varying separation distance. If the separation is varying, that is, the

separation distance is different at each point of the orbit, the measurement of the error of the
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separation distance requires the information of the satellite location in the orbit. If the
separation distance is constant, the measurement requires only a distance sensor.

To study the effect of perturbations due to a non-spherical Earth and the atmospheric
drag the BG 14 program was utilized with the same initial conditions used in Table 3.2.1.
The effects of the Moon and the Sun are also included but are thought to cause much smaller
perturbations. Figures 3.2.1(a) through 3.2.2(f) show the results from this numerical
procedure. There is virtually no indistinguishable difference in separation distance between
the case with first order oblateness and drag as compared with the case of first order
oblateness without drag. This is attributed to the relatively high perigee altitude of 600 km
used in this example. This result is different than that shown in the paper [49], due mainly
to precision of significant figures. Fig 3.2.2(a) ,which includes gravity degree 4, drag, and
solar radiation is the same as Fig 3.2.2(b) but over a shorter time. Fig 3.2.2(c) includes the
perturbations of gravity degree 4, drag, and solar radiation, and shows the response of Figs
3.2.2(a) and 3.2.2(b) over a longer period of time with the one radial thrust-impulse at the
first perigee; a secular perturbation, where the amplitude of oscillation increases with time,
however the mean value decreases. Fig 3.2.2(d) includes the perturbations of gravity degree
4, and solar radiation. Fig 3.2.2(e) includes the perturbations of gravity degree 4, and drag.
Fig 3.2.2(f) is included to show the effect of no initial shifting of the lines of apsides in a
perturbed orbit. In the same article by Badesha [32], formation flying for circular orbits was
also addressed. It is not the intent to compare ‘apples with oranges,’ but it can be seen from
these examples, better results and seemingly better control are achieved than that of Badesha.
In Badesha’s paper, the spacing between two spacecraft oscillate between 10 and 70 m with
the orbital period. The amplitude of the oscillation decreases with time but starts to increase
after 9 days. After approximately 21 days, the satellites have a potential to collide. It can
be concluded for both the cases shown in Table 3.2.1 and Fig.3.2.1, that subsequent station
keeping requirements would be far less than those associated with the original system shown
in Fig.3.1.1. As compared with the Keplerian results of Table 3.2.1 or Figs 3.2.1(a) and
3.2.1(b), using the same initial orientation between the lines of apsides of the mother and

daughter satellites, it is seen that the separation distance at each subsequent apogee is less
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than the required 500 km.
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Figures 3.2.2(c) through 3.2.2(e) show that the Earth’s oblateness (J, ) is perhaps the
dominating factor causing the secular perturbation. In a perturbed orbit, and allowing no
shifting of the lines of apsides and the spacecraft are allowed to be separated as in Fig. 3.1.1,
the secular perturbation still exists(see Fig. 3.2.2f), but the amplitude of the oscillations is
much greater than in Figs. 3.2.2(c) through (¢). Another interesting observation that can be
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especially recognized from Figures3. 2.1(a), 3.2.2(a) and 3.2.2(b), is Kepler’s second law in
effect (i.e., equal areas in equal time). From these plots, perigee being the first amplitude,
reveals a smaller area under the curve than the area under the next amplitude (apogee). As
the secular drift continues, a natural question would be, “what happens after 30 days”, or
“will the satellites ever collide if not further corrected, and if so,when?” These concerns are
addressed in Section 3.6.3.

A series of programs (software) were used to aid in the execution of BG14 and to
generate plots. One program was used to provide inputs, based on the desired configuration,
as part of the initialization phase for BG14. From the BG14 input file an output file is
produced. The short routine, which follows, written in MATLARB, is used to make many of

the plots contained in this document:

[trial_dat, trial_desc] = readbgl4(‘ filename ’);

plot(trial_dat(:,1), trial_dat(:,2));

xlabel(trial_desc(1,:));

ylabel(trial_desc(2,:)); or alternate ylabel(‘ appropriate comments’ );
title(* desired caption’ );

text( enter coordinates, ’ \ it { desired comments }’);

legend( ‘a+b’, ‘a = sin(x)’, ‘b = cos(x)); legend may not be necessary
It should be noticed that this program requires the function routine (readbg14) in order to
read the output file produced by BG14's input file.

3.3 Further Improvement {consider thrust at apogee and perigee}

In order to compensate for those initial effects, as depicted in section 3.2, additional
impulses may be desired. From the article by Schaub, et.al.[S1], correcting a particular
orbital element (a, e, i, 2, ®, M) causes subsequent errors in other orbit elements. Two
corrections schemes will be investigated for removal of the secular perturbation. A feedback
control system and a scheme made popular by Battin will be investigated for possible
control sometime after the impulsive maneuver. The correction scheme is now introduced

following the derivation of Battin, Chap 11, Sect. 6 [52], where Encke’s method is used to
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calculate a AV, in an attempt to further improve station keeping after initially shifting the line
of apsides . Encke’s method involves the planetary equations of motion. Orbital elements are
derived from these equations of motion. Thus, correcting a single orbit element has an effect
on the equations of motion, in general. With the aid of a transition matrix, a AV was
calculated which in turn was used to calculate the impulse needed to make the desired
maneuver (due to the nature of BG14). The result, as will be seen, of this scheme produced
no added benefit as compared with the single orbit correction scheme as initially used . To
proceed, Neustadt[53], and also Stern and Potter[54] noted that, at most, n impulses are
needed if the state space is n-dimensional. Thus at most 4 impulses are needed for this
problem. Therefore, a second impulse was assumed at apogee. To develop the required

mathematics and transition matrix, suppose that at some time, t, the spacecraft is found to

deviate from the reference path by an amount Jr(?) in positionand Jv(?) in velocity. One

must determine what the velocity deviation should be for that particular position deviation
so that the vehicle will arrive at the target point at the predetermined or reference time ( 7,

i.e., time at apogee in the Keplerian orbit).

ZON 0
w0 = TN an)

It remains to determine the partitioned transition matrix where it is noted that at any

time ¢ later than £, :
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R‘(tl) =~ RT(t)

where
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f

sothat @ (¢,£,)®(¢t,,t)=1  R(@t)=T V(it)=0

R(t)=0 and  V(t,)=T
R and V matrices represent deviations in position and velocity from the reference path.

Alsor,(t) andv, (¢) are the position and velocity vectors at time # for a vehicle in a

reference orbit. Then Ar(r)= R'F v(t,) & av(t)= V' (t)é v(t,)
eliminating J v(t,) one obtains the velocity vector V ( whose gradient with respect to »

is C*) and is that velocity required at 7 to reach the target point. If a velocity correction

AV (t) istobe made at this time, it can be expressed as
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AV(6)=0v(tT)-v(t™ )= C ()dr(t") - dv(t")

where the superscripts - and + are used to distinguish the velocity just prior to a correction
from the velocity immediately following the correction. For these calculations to remain
valid, it is necessary to restrict the magnitude of the deviations from the corresponding

nominal values. Alternately, one could target any intermediate point 7, such as the point

on the planet’s sphere of influence through which the reference orbit passes at the reference

time t Then, if ; and v are the position and velocity of the vehicle at the time the
correction is to be made, these vectors can be extrapolated to the time £, , using an orbital

integration technique, such as Encke’s method, in order to determine the point 7' where
the spacecraft would be found at the reference time if no corrective action were taken. By
calculating the conic arc connecting the position vectors » and r 7 with a transfer time of
t; - t (i.e., solving Lambert’s problem, Battin[52] Chapter 7) the conic velocity v ; (Non-

Keplerian orbit)at r isdetermined. A second conic arc connecting the spacecraft position
vector r and the desired target point ¢, produces the conic velocity vector v, (Keplerian
orbit). The difference between the conic velocity and the vehicle’s actual velocity is a good
measure of the effect of the disturbing perturbations. If this velocity is corrected for the
effect of perturbations, the velocity necessary to reach the desired target from position r is

obtained. Therefore an excellent approximation to the required velocity correction is just the

difference between the two conic velocities; specifically,

A V= ch— VCl
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In other words, the A V needed for a pursuer spacecraft (non-Keplerian orbit) and target
spacecraft (Keplerian orbit) can be approximated, by noting the small differences in velocity
of the two spacecraft with respect to small differences in their respective orbits.

This computation may be repeated iteratively to achieve the desired degree of
convergence. One would repeat the algorithm(Fig. 3.3.1) performing step 2 through 6 as
often as necessary. At present this is very time consuming and laborious. Obviously there

is a need for automation, whereby, the process can function or execute iteratively.
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Run BG 14 with appropriate input for
Keplerian and Non-Keplerian Orbits
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Correction
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Figure 3.3.1 Computation Algorithm
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Employing the above algorithm with the following velocities and calculated values as in

Table 3.3.1.
Table 3.3.1
Keplerian Orbit Non-Keplerian Orbit AV(km/s) A V,(km/s)*
(1) | 1455018706536 .14669367598619 -.032134488021 -
9605749
73467
(1) | 4-25483469618012 -4.2641354338482 .00930073767 2780207
92948
(1) | 00000154838281 .00001488945842 -1.334107561 X 10° -01178
%(2) | -05991132583111 -.02700319251021 -3.21100658009 X102 .
9505185
73882
P(2)| ~4-25600922462398 -4.26659407793047 .0104948533 3106674
72738
(2) | 0000016706955 - .00001526738801 -1.360031845 X 10°* .
0004025
95104525

(Apogee occurs at 6.35416666667 X 10 2 days, values in table occurred at t just prior to

apogee i.e. 6.3194444444X 10 2 days ) Both spacecraft maneuvered based on an inertial

system.

Note:

AV = AV /AT
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The burn times are calculated from the information in Section 3.5. In that section, a force
impulse 0f 3.49397660879 NS was found. That is, an input of 1 Newton for 3.49397660879
seconds. This corresponds to AV =.0388219623199 m/sec. In the case at hand, spacecraft 'A
no.1 has a AV,, =.0334533887605 m/sec and spacecraft no.2, AV, =.0337816289794
m/sec. Therefore AV =.0003282402189 m/sec, using ratio and proportion, it is determined
that force impulses of 3.01080498844 Nt-Sec and 3.04034660815 Nt-Sec are needed,
respectively. The magnitude and direction for velocity components are input via ‘direction’
into the BG14 input file. These directions are to be entered as input, in unit vector form. It
is worth noting that there are different interpretations in terminology as it relates to the
direction component, in the astronautical community. Instead of the normal right hand
system one may be accustomed to, BG14 uses the right hand system as depicted in Figure
3.3.2. ‘X’ is radial, ‘Y’ is along track, and ‘Z’ is in the opposite direction (anti or nadir
direction). In other systems, one may find radial as ‘R’ and the term ‘altitude’ used
interchangeably, ‘B’ represents the tangential or along track component and ‘N’ represents
the component normal to an orbit plane. For the case at hand, the ‘Y’ direction is along
track, ‘X’ is radial, and ‘Z’ component input will be opposite to that as calculated in the
table. The inputs are entered in the direction line of code, as unit vectors. Their order being:
along track (Y component),

crosstrack(Z component), and

radial (X component).

Figure 3.3.2

33



Both spacecraft maneuvered
T

Relative distance between spacecratt
&
o]

IS
8

W

®

=]
T

solar radiation, drag, gravity 4

360 L ) 4 . s
Q 5 10 15 20 25 30
Time(days)

Figure 3.3.3 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Non-Keplerian Orbit

Utilizing the above method, Figure 3.3.3, shows the results with both spacecraft
subject to impulsive maneuvers at the first apogee. There is no significant difference in the

secular drift time history as compared with the results shown in Figs. 3.2.2(c) - (¢) based on

only the first impulse taken at the first perigee. A second study, considered the effect of a |

second impulsive maneuver of the daughter spacecraft alone, at the first apogee, after an
initial maneuver at the first perigee. Then the Mother Spacecraft and its orbit will be
considered as the reference or fixed orbit. Now with a revised algorithm, Table 3.3.2
becomes appropriate. Figure 3.3.4 shows the time response simulated by BG14 over a 30
day period. In this case a AV =.124057 m/sec corresponding to an impulse of 11.1651 NS
and is assumed to occur in the radial direction at the first apogee. This represents about three
times the impulse assumed for the first radial maneuver at the first perigee. By comparing

Figure 3.3.4 and Figures 3.2.2(c, d & €), it can be seen that the response of Figure 3.3.4 has
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almost the same characteristics except for a small amplitude (“flattening out™) of the
maximum and minimum peak amplitudes. There is also no significant difference between

the results of Fig. 3.3.3 and Fig. 3.3.4.

Table 3.3.2
Mother’s Orbit Daughter’s Orbit AV (km/s) A \A/,.(km/s)
x(1) | .16993707421676 | .29387179316892 -.123934718952 -
99901280915
8
y(1) | -4.2633650433302 | - -.00551099826 -
4.25785404506646 04442304706
49
2(1) |.00001498390224 | .00001563415649 | -1.5025425 X 107 |-
5.24156854
877 X 10°

(Apogee for Mother is 5490.7 sec and 5529.096 sec for Daughter)
AV = .124057187071 m/sec or an impulse of 11.1651468364 N S.
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Daughter spacecraft maneuvered inertial frame of reference
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Figure 3.3.4 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Non-Keplerian Orbit

As a final point, all the above maneuvers were performed based on an inertial reference
frame. The study now continues with a displacement in the relative motion in a rotating
LVLH (local vertical, local horizontal), Table 3.3.3, coordinate system where Spacecraftno.1
is fixed. An explanation of an LVLH coordinate system, follows that of Bond and Allman

[55].
Table 3.33
Chaser / Daughter’s Orbit AV(kmi/s) A \A/,.(kmls)
Ax | -497.30856231311 -.0910816030378 -.999846745675
Ay | -00108369196631 -.0000002003098 -.00030046483
Az | 870752230659343 0015947843 1.75067174844 X 107
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LVLH Coordinate System. (Time 5459.9999997 seconds)
AV =.0910955638269 m/sec or an impulse of 8.19860074442 NS. A plot of this maneuver
( not included in document) supports the fact that the physics is the same, regardless of the
reference system. Thus, the results are no different than those of Figures 3.3.3 and 3.3.4.
However, nowa AV = 0.0911 m/s corresponding to an impulse of 8.1986 NS was assumed
to occur in the radial direction at the first apogee.

Assuming that the Battin’s scheme is successful, the secular drift will again become
a concern if spacecraft are allowed to travel for some additional time without a subsequent
correction. In the final analysis, it is clear that a different type of subsequent maneuver is
needed other than continuing to shift lines of apsides. A feedback control will be studied

later in Section 3.6 of this document.
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3.4 Parametric Trade - Off Studies

Tables 3.4.1(a) and (b) show a summary of the MATLAB input in preparation for
using the BG14 software in order to conduct a parametric study over a range of nominal -
separation distances and phase difference ratios ( or alternatively line of apsides orientation
shift angles ). The phase distance ratio is defined as the nominal ratio of separation distance
at perigee to the separation distance at apogee in the nominal uncorrected Keplerian orbit.
In this section, different than that of Section 3.1 and 3.2, distances between spacecraft and
their phase distance ratio were arbitrarily chosen as input. In turn, corresponding shift angles
and other initial conditions were calculated. That is, a priori, the ratio (2.05980966034) was
calculated based on the separation between ‘mother and daughter’ at apogee. In Table 3.4.1,
the initial conditions in cartesian coordinates for position and velocity components have been
calculated and are used as inputs to the BG14 orbital propagator software. Note, in keeping
with the BG14 coordinate System, the X component of velocity is given in an opposite
direction than that calculated by the program used here.

A preliminarily study using six different scenarios or ordered pairs (separation, shift
angle in degrees) were chosen as follows: (600, 1.628), (520, 1.402), (520, 1.386), (520,
1.2609),(500, 1.2124) and (100, .27147). For each case simulated, there are two different
effects :

(1) The situation wheread x4 non-spherical Earth’s gravitational field, aerodynamic

drag and solar radiation effects are included .

(2) The situation where only the non-spherical Earth’s gravitational field is included-

referred to as “no perturbations”
It is seen that there is negligible difference in the response, for the perturbed and non-
perturbed cases. For a nominal separation distance of 600 km and an initial line of apsides
shift angle of 2.1°, both an increasing and decreasing secular shift in the mother - daughter
separation distance is such that a near collision situation occurs approximately every 16 -
17 days. In addition, the maximum subsequent separation distance exceeds 20,000 km,
indicating that the two spacecraft are located on opposite sides of the orbit.

For combinations of separation distances and line of apsides shift angles of
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(520,2.2),(520,2.04), (520, 1.8) and (500, 1.8), show similar tendencies to those as the 600
km separation, but alternating between near collisions and maximum separation distance on
opposite sides of the orbit. The extreme sensitivity between separation distance history and
the initial line of apsides shift angle is particularly apparent by comparison of (520, 2.2 ),
(520, 2.04 ); representing a difference of 0.16 deg in shift angle. Although both scenarios
are clearly unacceptable, the frequency between the near collision events and the maximum
separation distance epochs is noticeably different.

The parametric selection of 100 km represents a drastic change in nominal separation
distance and 0.27147 deg in line of apsides shift angle. After an initial secular decrease in
separation distance followed by near collision, there is a secular increase in the separation
distance to almost a maximum of 4500 km at the end of the 30 days. Simulation shows that
the 100 km separation case has an initial downward trend, which begins at about day 200,
and perhaps a zero relative separation after about 800 days.

Although the results of this parametric study, up to this point, are far from conclusive,
the results are quite dramatic. In order to avoid near collision possibility (followed by a
maximum separation extending to opposite sides of the orbit...chaos), the success of the
initial maneuver is critically dependent on the amplitude of the initial line of apsides shift

angle which results from an initial radial impulsive thrusting maneuver.
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Table 3.4.1 (a)

Trade-off Studies Using BG-14 Software

£ g Shift Angle x1 km ylkm x2 km | y2
g 2 Aggrase

§ km
600 |21 1.6289008847 | 6964.102386146758 | 599.835765352191 6978.14 | 0.0
520 |22 1.4022541 6978.321029613882 | 566.8205583353445 | 6978.14 | 0.0
520 |21 1.4117022666 | 6967.585400672765 | 519.8930767241359 | 6978.14 | 0.0
520 |2.04 | 1.3862096862 | 6967.516326413141 | 519.8914670338451 | 6978.14 | 0.0
520 |18 1.2609713096 | 6967.133025595134 | 519.8834931600558 | 6978.14 | 0.0
500 |22 1.3944447015 | 6968.501857349625 | 499.9070973826904 | 6978.14 | 0.0
500 |21 1.3574034351 | 6968.390758465615 | 499.9040432461227 | 6978.14 | 0.0
500 |204 | 1.3328914763 | 6968.317652302147 | 499.9035120363998 | 6978.14 | 0.0
500 |18 1.2124705660 | 6967.963280272655 | 499.8964237732126 | 6978.14 | 0.0
490 |22 1.3665544718 | 6068.883448342178 | 489.912559507882 6978.14 | 0.0
490 | 2.1 1.3302541343 | 6968.776750739195 | 489.9105318712732 | 6978.14 | 0.0
490 | 204 | 1.3062324803 | 6968.706540682686 | 489.909185415297 6978.14 | 0.0
40 |18 1.1882202775 | 6968.366206991123 | 489.9025138004483 | 6978.14 | 0.0
250 |22 69720944502 | 6975.730072346111 | 249.9883826038613 | 6978.14 | 0.0
250 |21 67868981321 | 6975.702306271525 | 249.9881142267019 | 6978.14 | 0.0
250 | 204 | 66643446716 | 6975.68403525283 | 249.987937556445 6978.14 | 0.0
250 |18 80622679964 | 6975.505467936702 | 249.9870491241593 | 6978.14 | 0.0
100 |22 27888233266 | 6977.754394017853 | 99.99925353798552 | 6978.14 | 0.0
100 |21 27147459208 | 6977.749951986059 | 99.99922059295476 | 6978.14 | 0.0
100 | 204 | .26657252458 | 6977.747028638967 | 99.99923485056863 | 6978.14 | 0.0
100 |18 2424897697 | 6977.732858668894 | 99.99921363543054 | 6978.14 | 0.0

z1=22=0
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Table 3.4.1 (b)
Trade-off Studies Using BG-14 Software

g § Shift Angle | x1 km/s y1 km/s x2| y2km/s
g degrees k
7]

m

Is
600 |21 | 1.628901 751663795138 | 8.72682812807 0.0 | 8.75913966311
520 |22 | 1.4022541 20954545507477 | 8.76555905578956 | 0.0 | 8.76806334707253
520 |21 | 1.4117022666 | 65196146981314 | 8.73757305465386 | 0.0 | 8.76186262409621
520 |2.04 | 1.3862006862 | .65197229681564 | 8.73764604822093 | 0.0 | 8.76193622093917
520 |1.8 |[1.2609713096 | .65202457063491 | 8.73799991601468 | 0.0 | 8.7622929974399
500 |22 |1.3944447015 | .62698519749379 | 8.73991894922326 | 0.0 | 8.76237945291506
500 |21 |[1.3574034351 | .62699985494731 | 8.74002158570968 | 0.0 | 8.76248287512021
500 |2.04 | 1.3328914763 | .62700948319525 | 8.74008912662367 | 0.0 | 8.76255093185438
500 | 1.8 | 1.2124705669 | .62705597084535 | 8.74041655778747 | 0.0 | 8.76288085016669
490 |22 | 1.3665544718 | .61450020639866 | 8.74111151932122 | 0.0 | 8.76268458275625
490 |21 | 1.3302541343 | 6145140039868 | 8.74121012999996 | 0.0 | 8.76278391824823
490 | 2.04 | 1.3062324803 | .61452306827408 | 8.74127502151602 | 0.0 | 8.76284928566164
490 | 1.8 | 1.1882202775 | .61456682905557 | 8.74158960791318 | 0.0 | 8.76316616643501
250 |22 | 69720044502 | .31402199545038 | 8.76253789991239 | 0.0 | 8.76816287833623
250 |21 |.67868981321 | .31402383464524 | 8.76256374962109 | 0.0 | 8.76818877733018
250 |2.04 | 66643446716 | .31440250448148 | 8.7625807596817 | 0.0 | 8.7682058198194
250 | 1.8 | .60622679964 | .31403087096743 | 8.762663217904 | 0.0 | 8.76828843380099
100 |22 |.27888233266 | .12566819543109 | 8.76888348495991 | 0.0 | 8.76978392368624
100 |21 | .27147450208 | .12566829343061 | 8.76888762984303 | 0.0 | 8.76978806954898
100 | 2.04 | 26657252458 | .12566840308474 | 8.76889035650879 | 0.0 | 8.76979079750519
100 | 1.8 | .2424897697 | .12566882106324 | 8.76890357598226 | 0.0 | 8.76980402161085

21=22=0, x<0

For completeness, further studies of the nominal 500 km separation distance were

studied concentrating on the small range of shift angles near 1.3414581297943 degrees.
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The objective was twofold: (1) To determine if other optimal ratios exists, and (2) to
determine the level of sensitivity. Table 3.4.2(a,b) contains summary of the data used
surrounding the 500 km analysis.
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Table 3.4.2(a)

Trade-off Studies for 500 km Separation

Ratio Shift Angle x] km ylkm x2 km | y2
degrees n

2.2 1.3944447015 6968.501857349625 | 499.9070973826904 6978.14 0.0
2.1 1.3574034351 6968.390758465615 | 499.9049432461227 6978.14 0.0
2.04 1.3328914763 6968.317652302147 | 499.9035120363998 6978.14 0.0
2.05980688507 | 1.3414581297943 6962.3129552193 499.7697508871 6978.14 00*
.
2.05981 134119108298 6968.342368768165 | 499.9039972175107 6978.14 0.0
2.06 1.34126967 6968.342603013903 | 499.9040014341221 6978.14 0.0
1.8 1.2124705669 6967.963280272655 | 499.8964237732126 6978.14 0.0

* Optimal accepted value

Table 3.4.2(b)

Trade-off Studies for 500 km Separation
Ratio Shift Angle | x1 km/s y1 km/s x2 | y2km/s

degrees . km/
S

22 1.3944447015 .62698519749379 | 8.73991894922326 0.0 8.76237945291506
2.1 1.3574034351 .62699985494731 | 8.74002158570968 0.0 8.76248287512021
2.04 1.3328914763 .62700948319525 | 8.74008912662367 0.0 8.76255093185438
2.05980688507 | 1.34145812979 | .51916724165269 | 8.7527292910018 0.0 8.770063506 *
* 43
2.05981 1.34119108298 | .6270062295741 8.74006629141183 0.0 8.76252792236339
2.06 1.34126967 .62700619826428 | 8.74006607505535 0.0 8.76252770432113
1.8 1.2124705669 .62705597084535 | 8.74041655778747 0.0 8.76288085016669

* Optimal accepted value, x<0

Plots from the scenario using a ratio of 2.05981, which equates to a change in ratio
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by .00000311493 from the nominal value, revealed similar results to those already
mentioned. That is, an alternation between near collisions and maximum separation distance

on opposite sides of the orbits. The change in ratio equates
t01.288615989913922 x 107° degrees, hardly a realizable angle for practical purposes.

To add, the stated change in ratio causes the following changes in positions and velocities:

Increase in x, by A X, =.02941354886500km
Increase in y, by Ay, =.13424633041070km
Decrease in v ,by A v, =.10783898792141km / sec

Increase inv,, by A v , =.01266299958997km / sec

Increase in v, by A v , =.00753558363661km / sec

There is room for error. The above values were generated via a fourth degree polynomial.
Thus human selection is needed to pick the desired root. Nevertheless, this supports the fact
that very small changes in ratios create significant changes in the kinematics variables.
To verify or to access the possibility of other optimal values, then one could
undertake the time laboring tasks of examining possible sequences, and thus determining the
range of values for a calculated ratio. Any elementary statistic text on the subject of counting
techniques will state:
In a sequence of n events in which the first one has ki possibilities, the second event .
has k2, the third has k3, etc., the total possibilities of the sequence will be
kle k2e k3---kn.
Therefore, examining the sequence of numbers 2.05980688507 and knowing that 2.05981

is out of the range for acceptable station keeping, then there exist at most

100100 100 100 100 100 10= 107 - 1 variations between the sequence of

numbers. The minus 1 accounts for the one already known value. A sufficient proof would
be for one to begin with the unacceptable value, while performing necessary variations and

proceeding toward the accepted value, or vise versa.
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It is now theorized that at most one optimal shift angle exists for each nominal
separation. That is, there is one unique ratio (phase to geometry distances) per each given
separation, apogee and perigee. To determine the optimal angle for a general separation, a
systematic calculation as performed in Section 3.1 must be executed. Attempts to find this
unique ratio were investigated using Kepler’s law dealing with equal areas. This method
also proved to be unsuccessful due to an additional approximation of letting an arc be equal
to that of a straight line. To eliminate the additional approximation, the laws of momentum
were used to find these angles and thus the relevant coordinates. A glance of the numbers
in Table 3.4.3 will not reveal much discernment. However, a plot of the relative separation
using BG14 showed the difference. The relative separation of spacecraft produced as a result
of conservation of momentum is shown in Figures 3.4.1 and 3.4.2 for 100 and 400

kilometers separations, and is regarded as that based on the most accurate input coordinates.
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Table 3.4.3
Coordinates of 400 Kilometers Separation
\ coordinates found by a=1.0731572546746 degrees
1 using Kepler’s law of

equal area

x1 (km) yl (km) x1' (km/s) yI'(

6978.137 0.0 0.0 km/s)
8.76524
8946906
3

x2 (km) y2 (km) x2' (km/s) x2'

6983.33319994463 399.9508485336767 -.50200516804901 (km/s)
8.75086
1666858
54

coordinates found using a=1.0731418694681 degrees

conservation of

momentum

x1 (km) yl (km) xI' (kmy/s) yl'(

6978.137 0.0 0.0 km/s)
8.77006
3506186
98

X2 (km) y2 (km) x2' (km/s) y2'

6968.01020467271 399.87178947311 -0.41542669857296 (km/s)
8.75896
9265945
06

Using the data for the input coordinates and velocities from Table 3.4.3 and assuming that
an initial impulsive maneuver to shift the line of apsides has just been completed at perigee,

Figures 3.4.1 and 3.4.2 show 30 day time histories of separation distances between mother
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and daughter satellites for nominal separation distances of 400km (Figs 3.4.1 a& b) and 100
km (Figs 3.4.2 a & b). For each separation distance the first plot (Figs 3.4.1a, 3.4.2a) shows
separation distance in a nominal Keplerian orbit and verifies the concept of an initial
impulsive shift in the line of apsides; the second plot (Figs 3.4.1b, 3.4.2b) shows the secular
drift attributed to oblateness and atmospheric drag. In comparison with previous results for
the nominal 500 km separation, it is observed in general that the smaller the nominal
separation distance, the smaller is the amplitude of the oscillation in the amplitude of the
separation distance for the ideal Keplerian orbits. In addition the amplitudes of the
oscillations for the secular drifts caused mainly by oblateness, is increased for the larger

nominal separation distances.

Keplerian orbit for 30 days
405 ; T

no perturbations

390

Relalive distance between spacecrafi 1 and 2

385

380 L L 1 1 N N
(o] S 10 15 20 25 30
Time(days)

Figure 3.4.1(a) 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Keplerian Orbit
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Figure 3.4.1(b) 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Non-Keplerian Orbit
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Figure 3.4.2(a) 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Keplerian Orbit
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Figure 3.4.2(b) 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Non-Keplerian Orbit

To remove the secular perturbation, a feedback control system will be investigated for

possible control sometime after the impulsive maneuver. Feedback control will be studied

later in Section 3.6 of this document.
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3.5 Implementation - Propulsive Requirements Based on Lagrange’s Planetary
Equations for Impulsive (thrust) Perturbations

In order to study the implementation of the in-plane station keeping strategy
Lagrange’s planetary equations for impulsive perturbations are evaluated. These equations

are taken from Ref. [49] and are available in several texts devoted to celestial mechanics and
are listed as follows:

dQ  nar N si .
—_ sinu coseci
dt m l_el

-‘—11 =" _ N cosu

dt m 1_e2

% = —\/1 -e?[Rsin@+B(cos8+cosE)]
1
%"tl_ﬂ\/l —e7[ RcosG+B(1+—)sm9]+2s (l/z)ii-“l
ne
or 11_(2_50_\/1 -e2[-Rcos0+B(1 +—)s1n9] cosxd—Q
dr pe dt

2 2
da _2na R ae_ . 0+B° 2/1-e 1

a n [1-¢2 r
dn _ _3nda
dt 2 a dt

51




The left side represents the time-rate of change for the various orbital elements and

parameters. The force impulse per unit mass is
F = RF+Nh+Bhx¢

where R represents the radial (altitude) direction component;
N represents the component normal to the orbit plane;
B represents the tangential (along track) component;

7 - unit vector along the outward radius;

A

h - unit vector in the direction of the orbital angular momentum vector;

hix 7 is a unit vector in the positive tangential direction (local horizontal).
The following symbols represent the customary orbital elements:

a: semi-major axis;

e: eccentricity;

Q: longitude of the ascending node;

i: orbit plane inclination angle with respect to the equator;

o: argument of perigee (perihelion).
In addition n represents the mean angular rate in the orbit and

@ = Q + @ isthe longitude of perigee; it is measured first in the ecliptic plane to

the ascending node, and then in the plane of the orbit to the direction of perigee. E isthe
eccentric anomaly, 6 is the true anomaly, = @ + w , and p is the semi-latus rectum
p=h¥p=a(l-€?), and p=Earth’s gravitational constant.

In Fig 3.5.1, a geometric interpretation is provided to describe those six commonly
used elements of the orbit. The Sun is at O, Ox points toward the vernal equinox and Oz
toward the north pole of the ecliptic. Letting the plane of the orbit cut the celestial sphere
in the great circle HPA, then H is the point where the body in its orbit rises north of the
ecliptic, called the ascending node. The point at which the body crosses the ecliptic, moving
south, is the descending node. The angle xOH is the longitude of the ascending node; it is
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. written as 2, measured eastward
Figure 3.5.1 z
> A around the ecliptic. The angle

h , | 4 between the plane of the orbit and

the ecliptic (angle betweenj,

and Z ) is called the inclination; it

9/—\ R — > is written as i ( often times right

/// \1 P ascension and declination are used

P - “ ® o Ecliptic interchangeably with celestial

yid S equator and vernal equinox). The

x N \\A angle HOP is called the argument

| " Y of perihelion; it is written as o.

For geocentric orbits, the Earth is at point O and the ecliptic plane is replaced by the Earth’s
equatorial plane.

Back to the research at hand, one possible strategy that will result in a change of the
orientation of the semi-major axis without changing the length of the semi-major axis nor
the eccentricity is to provide force impulses only in the radial direction at the perigee and /or
apogee positions, and maintaining B =N = 0. With this strategy the mean orbital angular rate
n remains constant as well as the values of Q and i.

Using the parameters for the strawman configuration: a = 10678.14 km.; e =
0.34650029347059; n = 5.69423x10* rad/sec. and p = 398603.361 km® / sec? the value of
the force impulse can be calculated from the expression for dw /dt. We recall that R dt = (R,
/m) dt where R; is the actual thrust in N and m is the mass of each spacecraft in the
constellation (m = 90 kg). If it is desired to cause a change in the argument of perigee of 1
degree (1/57.3 rad) then a force impulse 0f 3.49397660879 NS at perigee (or apogee ) would
be required. This appears to be well inside the performance limits for the proposed pulse
plasma thrusters (PPT). Of course other thrusting strategies could be employed at different
points along the orbit and utilizing other components of the thrust vector. The example

presented here is to show capability and may not represent an “optimum” design strategy.

To convert impulse in terms of AV
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F=dP/dt

or
AtF=Amv+mA v

assuming mass is constant, then

A v=Fdt/ m= 0.0388219623199 m/sec.
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3.6 Analytical Solution to Station Keeping Under Continuous Thrust Via
Tschauner - Hempel Equation of Motion

In this section, the relative motion of two spacecraft (m1 and m2) is discussed. Each
spacecraft is orbiting a third (massive) body such as the Earth (m3). The general (linear)
state equations are replaced by the Tschauner - Hempel equations. In the present form, the

equation

F+ ._;F=l-5 has a singularity at r= 0. F

represents the perturbation forces, [/ is the reduced mass and V" denotes the radial

displacement.

This equation has the integral E = —mr~ -

5 = const. ,

2_H
x

or where F = O therefore 7— © asr— 0.

If the true anomaly of the target vehicle is used as the independent variable ( as does
Tschauner - Hempel) instead of time, then this should eliminate the requirements to
numerically solve Kepler’s equations at each time step as well as accomplishing the task of
regularizing the two body probleni. Other forms of regularization have been accomplished
by using a “fictitious” time, the so-called Sundmann transformation[55]. Regularization is
defined as the elimination of singularities from the differential equation. However, the
process of eliminating a singularity from a differential equation of motion by the use of one
or more integrals is referred to as embedding.

A general formulation for the relative motion allowing for arbitrary perturbing or

av(r,t)

thrust forces on each of the two spacecraft is presented. F Has the form F = P- p

where the P components are perturbations not generally derivable from a potential, such as
thrust and drag. V(r,t) is the perturbing potential that can depend explicitly on time if
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required. Approximate perturbation solutions for the linearized relative motion equation
with continuous radial or circumferential forces acting on the spacecraft will be established.

A pseudo method for station keeping will now be investigated. After a shift in the
lines of apsides is made, the Tschauner-Hempel equations involving a continuous control
function will be used to find a control law for the control of thrusting, using continuous
linear quadratic regulator (LQR) theory. The derivation of the Tschauner-Hempel equations
is outlined in Ref.[31]. In obtaining a general analytical solution, in an earlier study,
Tschauner obtained a canonical transformation that simplifies the homogeneous part of the
equation. The control influence matrix, B, ordinarily becomes quite complicated and thus
no advantage gained. However, the B matrix in this case of study, is also simplified. Thus
a delightful added benefit gained by the use of these equations, besides the fact they are
already linearized, is that they exhibit a relative motion in the local vertical/local horizontal
system.

3.6.1 Development of LQR

The most general development of station keeping strategy, using feedback, will now
be developed. The adaptation is as outlined in Kirk [56] and Lewis [57], where the interest
is not in regulating a state near zero but the state is to follow a nonzero reference. Therefore,
the optimal control will consist of a feedback and a feedforward command. Given this robust
development, restrictions can be imposed whereby adaptations can be made for almost any
situation.

For a fixed final state - the desired system is to maintain a constant state r(8;) =Ry
or separation for all 8, and more specifically, some 8 = 6, (reachability is required)

x(8,)=r0,)=Ry (3.6.1.1)

and given the system x'(4) = A(8)+ B(@)u+d xeR"andueR™ (3.6.1.2)

d is a small disturbance; the most general form of quadratic performance index ( PI)

56




J= %[x(af)- Re] S[x@)- R, ]+

8, T
';— [{ [x6)-r®)] 0@[x(6)-r@®)]+ " O)REOE) }do
= %"x(”f)‘ R,[ s+ :21_ [{ k@ - r@)] 0+ @) & }as 3613
3

The performance measure indicates that the state x(@) is to be maintained close to

Ry and r(8) without excessive expenditure of control effort. R is a function of 6

only if it is desired to vary the weighting on the control effort. S and Q are real symmetric
positive semi-definite matrices (i.e., > 0), whereby, R is a real symmetric positive definite
matrix (i.e., > 0 ). This guarantees the existence of R for all & € [6,,6,]. Once the P

weighting matrices Q and R have been selected, the determination of the optimal feedback
gain K is a formal procedure relying on the solution of nonlinear coupled matrix equations.
Therefore, the engineering judgment in modern LQR design appears in the selection of Q and
R. There are some guidelines for this; all of which will be discussed later. The objective is

to find the optimal control sequence U, 41> Uian gentiar » ¥ perpendicuiar that maintains the desired
separation, x(6,) = Ry while minimizing the performance function.

Now as in Chapter 1, but for a continuous system, the Hamiltonian can be represented

1 1
H(x(6),u(6), p(6),6) = —2-”x(9) -r@| 0+ Elluqu + p{Ax+ Bu} 3.6.1.4)
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x =——= Ax+ Bu 36.1.5
op ( )
\ cH
P ="Z;—x—="Qx'ATp+Qr (3.6.1.6)
. . . JH r
Instead of using the stationary condition Ti_u— =0=Ru+B'p 3.6.1.7)
u=-R'B'p (3.6.1.8)

This is the minimum energy constrained input control expressed as a costate feedback.

Substituting (3.6.1.8) into the state equation (3.6.1.5), yields the state and costate equations

ERPEEE T
717 co@n: -4722 | plTlor] ©%

The solution to these linear and 8 varying differential equations where Qr is a forcing

function is

x(0f) _ x(8) 8 d
[p(ef)] = ¢(9f’0)|i p(a)} + J¢(0f97)|:—‘—‘—_g(r)r(r):ld7 G6110)

where @ is the transition matrix of the system (3.6.1.9). If ¢ is partitioned, and the integral
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replaced by the 2n x 1 vector M (3.6.1.11)
£2(0)

then equation (3.6.1.10) can be written as

x(8,)=9,,(6,,0)x(0)+ ¢,,(6,0)p(8)+ f,(6)
P0;) = 0,,(0,,0)x(0) + 9, (8,,0)p(0) + f,(6) 36112@&D)

Now seeking to investigate the boundary conditions, Lewis [57] offers an excellent
interpretation. It is assumed that x(0 ,) is known. Rewriting the cost function, equation

(3.6.1.3) as

6

J= F(x(8,,0,0)+ [[L(x,u.6)+ pTOX [ (x,u,0)- x)|d6

4

b
= F(x(0,,8,)+ |[[H(x,u,6)- p"(6)x}6 (3.6.113)
b

since H(x,u,0)= L(x,u,0)+ p"(8)f(x,u,0) (3.6.1.19)

Using Leibniz’s rule, the increment in J as a function of increments in x, p, u and 9 is

dJ = (F,)dx ,, + (H - px)do|, - (H~ p'x')dd,

o, + Fyd9

4y (3.6.1.15)
+ [[HTdx+ HTou- pTon's (H, - x')" dpldf
bo
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Subscripts denote a derivative with respect to that variable. To eliminate the variation of

x' , integrate by parts and find

o O
- jpTax-da =-p'ox o, pTo"x‘ao + jp""ﬂxde (3.6.1.16)
& b

Substitute the fact from reference[56}]

dx(8,)= ox(6,)+x'(8,)db, (3.6.1.17)

into equation (3.6.1.16) then

dJ = (F.- p) dx . +(F,+ H- p"x'+ p"x")d# 0
-(H- pTx'+pTx')d0l00 + p}"dx‘go (3.6.1.18)
b

+ I{(Hx + p'Y ox+ H ou+ (H, - x')Ta"p}dB

b

Since Ry, is fixed, then dlx| 0, = 0. Therefore, the boundary conditions imply

p(8,)= Sx(8,)- Sr(b,) (3.6.1.19)

Using equation (3.6.1.19) and substituting x(8;) from 3.6.1.12(a) into 3.6.1.12(b) then

$[01(8,.6)%(6) + 0,,(6,,6)p(8) + £,(6)]- 57(6,)

(3.6.1.20)
= 05,(8,,0)x(8)+ 0,(6,,0) p(0) + 1,(0)

Solving for p(0) yields
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P(O) = [022(6,.6)~ 50,,(8,.0)] [50.,(6,.0)~ 0,,(8,.0)|x(6)

-1 (3.6.1.21)
+[¢2z(3j,9)' S(”xz(af’g)] [Sfl(a)“ SRy - fz(a)]

or p(0) = k(0)x(8)+ m(6) (3.6.122)  Then

() = -[R"'(§) B" (9)k(8)x(8) + R™'(8)B" (9)m(8)] (3.6.1.23)

u(@)=-F(0)x(0)+v(8) (2™ term in3.6.1. 23 < 0)

(3.6.1.24)

The first term (coefficient of X in equation 3.6.1.24), is the feedback gain and the second is
the command signal or feedforward gain. k(0) and m(0) of equation (3.6.1.23) are the unique
positive semi-definite solutions of the Riccati equations. Furthermore, A(8), B(6), R(8){R
is not necessarily 6 dependent}, Q(6) and S must be found or specified. By adjusting the
elements’ values, the weight and relative importance of the deviation of each of the states
from their desired values is understood.

To avoid determining the transition matrix, differentiate (3.6.1.22)

p'(0) = k'(0)x(8) + k(6)x'(6) + m'(6) (3.6.1.25)

Substituting from (3.6.1.9) for p'(#) and x'(f) and using (3.6.1.22) to eliminate p(6),
theh
[ k+Q+ kd+ A"k~ kBR'B"k

r nT (3.6.1.26)
+[m'+ A"m~ kBR'B"m~ Qr+ kd|= 0

61



(recalling matrices are 6 dependent) also for every x(0) and r(0), then
~k'=kA+ A"k+ Q- kBR'B"k

3.6.1.27)
~m'=[A" - kBR"'B"|m- Or + kd (

The set of equations in (3.6.1.27) are considered as differential Riccati equations . If the

output is specified as a linear combination of states or y(8) = Cx(#), then the second

term on the right side of the second equation (3.6.1.27) becomes C TQr . Much can be said

regarding whether these equations are well posed and stable. From Computational Methods

for Linear Control Systems [58], a series of tests can be performed to check those conditions.

Letting NN = Q in the first equation of (3.6.1.26) or Q can be computed from N; and

letting V' Ty = - Qr , from the second equation, then if the pair (A,B) is controllable and
the pairs (N, 4) and (V, A) are observable, (e, O= [V VA VA.--VA™"] has

the full rank n and O" O is non-singular ), the Riccati equations must have unique positive
q

definite solutions. Thus, there exists a unique optimal control % * (§) which minimizes

equation (3.6.1.3) and may be expressed as a linear state feedback. It is understood that A
must have constant coefficients in order to apply the LQR theory.
Boundary conditions imply the following:

p*(,)=Sx*(0,)- Sr(f,)= k(0,)x*(6,)+ m(6,) (3.6.1.28)

V.  x*@f)and r(6,) then k(6,)= S and m(6,)= -C"Sr(6,) (3.6.1.29)

m(8) can be determined by integrating backward the closed-loop adjoint system, equation
(3.6.1.29). Then m(0) is known. During the actual control run, m(0) is used in the forward

equation, the second equation of (3.6.1.27). This method however, will not be used, but the -

62



Riccati equation will be allowed to reach a steady-state solution. Therefore, the final

boundary conditions will not be of consideration.

3.6.2 Solution of the LQR based on the Tschauner-Hempel Equations of
Motion
Proceeding to place the Tschauner-Hempel equations into state space form, these

equations can be represented as:

1" ! 3#r
¢ -2 -7 ¢ =a,
”n + 2&: =a, (3.6.2.1)

("+4=a;

where «f ’ n,and ¢ are non-dimensionalized coordinates centered at the target or

reference spacecraft. £ describes cross track (outward radial) motion, 7 -alongtrack, and {

out of the nominal orbit plane of the target spacecraft. Equation (3.6.2.1) can then be

converted into state variable format, as:
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f”=27'+%§+ a,
n"=-2{"+a,
{"=-0+a,
letting
§=x
g =x1=x
£ = x,
=X
7= =%,
"= x,

¢ = x;

§'= x5 = x4

¢ = x,

therefore

(=Nl
o O O o O

ey
®
N~
oooo’{;l{fo
N
o o |,
o o oo o o o
c oo o —~ N o

¢\,

O\(xY¢é (0 0 O
oflx|e |1 00
0|l x;| 7 0 0 o]“%
ollx |7 o 1 o]
xl¢ [0 o of\%
ollxJ¢ Lo 01
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Upon interchanging rows so the first three variables are position and the second three are

velocity, then equation (3.6.30) in common state space representation, is:

(&Y (0 0 0 1 0 0)¢ 0 0 0

7| | 0 0 0 0 1 Ofp 0O 0 O
;'—30r00001:+000f 3.6.22(b)
f"'—h‘—‘i—ooozog' ol 0 0%
n" 0 0 0 -2 0 oll7] |0 2 o]\%

¢" 0 0 -1 0 0 0o\/) L0 0 c3

The nonlinear term in this matrix can be adjusted in a number of ways:

2
1. When it is assumed that # remains constant (i.e. equal to () = — ), true for a circle
U

and relatively short displacements, then the term becomes equal to 3.
2. If simulation is started at perigee or apogee then evaluate r at perigee or apogee
respectively, and treat as constant for sufficiently short time thereafter.

3. If several orbits are needed to correct the disturbance, then use an average value for r
with

b2
h=rxvs= \’——'u- . his the angular momentum, a the semimajor axis and b
a

is the semiminor axis.
4. A final consideration, is to update 1 and 2 in a piecewise adapted manner along the
orbit.
Although the T-H equations simplify the fundamental matrix, the right hand side
(RHS) can become quite cumbersome, depending on the type/location of actuators. The
terms on the RHS of (3.6.2.1) contain all the relative accelerations (i.e. drag, thrust and
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Earth’s oblateness). However, since the mass of each spacecraft is equal, and if the ballistic
coefficients are the same, then the relative drag is approximately equal to zero. Therefore

its contribution will not be considered as part of the acceleration term, but only the thrustand

oblateness terms. Ifthe variables ¢l, ¢2, and c¢3 areselected to include thrust and

oblateness, the control will appear as u, = #— d . The oblateness term will be included

separately and the development will proceed as below.

The contribution of oblateness is as follows:

k
G “ re Il ! S
a= 7L Jk(—,:‘"] [Pici(cose)i, - pi(cosp)i] 3623)
k=2

I, is the equatorial radius. In X, },Z coordinates(to be normalized in the §, 0, { notation),

where u = @ + 0, and from Battin [18,52], if only the second harmonic term is considered ,

then the acceleration terms are as follows:

1- 3sin*(w + #)sin’i

a
¥ 3GJ,r?,(1+ 6)*
a| =-22 4q( fios ) sin(2w + 20)sin® i
> ~a(l-¢%) . :
a.), sin(o + #)sin2i
i=0, | (3624)
(-3GJ,r, (1+ ecosd)
a, a4(1_ e2)4
al = 0
al, 0

66




and d=| .| (3.625)

o = O O O

o - O O O O
-0 O O O Q
o

\ 0

 =3J,r,2(1+ ecost)*
where aj = 2 (- N

Now enough information is known to execute the program for LQR. This LQR program will
be based on the linearize Tschauner Hempel equations of motion with respect to the LVLH
coordinate frame. The origin of the LVLH is the mother spacecraft point on the reference
ellipse. Again the & axis of the frame points radially outward along the local vertical

direction, the n axis is along the direction of motion on the reference orbit, while the { axis

is normal to the reference orbit plane. The initial state vectoris (§,7,4,¢',7',4") and the
initial perturbation variable asx,=(d£,07,00,¢',n',') where
66=¢-¢, on=n-1n, and 0§=¢-¢,,etc. The Tschauner-Hempel

equations will be linearized only once, in that, station keeping will be considered for
spacecraft along track, thus the reference spacecraft, can be taken as the unperturbed
position of any daughter’s position.( If some other configuration is to be considered, such as
a triangle, then these equations would need to be re-linearized around various places in the
orbit, to accommodate an inherent two dimensional configuration). For example, a 501 km
(mother - daughter) separation from a nominal 500 km, implies a one kilometer as input, as

the variation of the daughter spacecraft from its unperturbed position along track.
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The gj term in equation (3.6.2.5), and others when necessary, must be put into non-

dimensional form; this will be accomplished in the coding, being mindful of theta
dependance: '

Once the state matrices are specified, then enough information is available to solve
the differential Riccati equations. A couple of methods exists to solve equations (3.6.1.26
and 3.6.1.27). Since in general k and m are an n x n, symmetric matrices (n = 6 ), implies

n(n + 1)/2 first- order differential equations must be solved. These equations can be

integrated numerically, starting at 0 = 6, and proceeding backward to 6 =6, ; k(#) and
m(@) are stored, and the feedback gain matrix is determined from equation (3.6.1.23).

Now most Runge-Kutta integration routines run forward in time. To accomplish the
backward integration, the RHS of (3.6.1.26) is multiplied by a ( -1 ), and then integrated
forward from 0 = 6, (corresponding to t =0 ). The resulting solution is reversed and shifted
to 0 =0, (corresponding to t =T ). The second part of the simulation is to find the optimal
control law and update the system dynamics by integrating forward in time. Alternatively,
to determine the ¥ and m matrices, for an infinite time process, either perform a
backward recursion integration until a steady state solution is obtained or simply solve the
nonlinear algebraic Riccati equation (ARE), obtained by setting k' andm’ equalto 0. The
second part of the simulation still is to find the optimal control law and update the system
dynamics by integrating forward in time. This method will be chosen to solve the Riccati

equation, of which k and m are solutions. The program contains the following dimensions

for the various matrices: A€ R®® BeR*® SeR™® ReR™ QeR*

. WithR, € R®™' and x € R®" would imply a calculated value of control u € R*',
N

feedback and feedforward respectively, k € R*® & me R*'. If infinite time only is

considered then the weighting matrix S = 0,( as in Eq. (3.6.1.3)), since only an engineering
approximation is assumed. The MATLAB function [K S, ] = lqr(A, B, Q, R, N) will be
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T_T_—______f___“*______________m'"**

used to solve the ARE, for a particular Q and R; N is defaulted to zero . Further descriptions
show that this function also calculates the optimal gain matrix K such that the state-feedback
law u=-Kx (3.62.6)

minimizes the quadratic cost function

J(u)= [(x"Qx+ uT Ru+ 2x™ Nu)dt (3.62.7)
0

x= Ax+ Bu+d

for the continuous time state space model (3.6.2.8)

The oblateness is included as a disturbance term in (3.6.2.8). The state feedback gain K, Iqr
returns the solution S of the associated Riccati equation. As a note, be mindful of change of
variables. For instance, in the MATLAB routine S is not the same as the weighting function
S, and is the solution to the ARE.

A'S+ SA- (SB+ N)R'(B'S+ N)+ Q=0 (3.6.2.9)

and the closed - loop eigenvalues e=eig(A- B*K). (3.6.2.10)
Note that K is derived from S by K=R'B'S+N") (3.6211)
or u=-R'(B'S+ N")x (3.6.2.12)

Again thé problem data must satisfy the following limitations:
» (A,B) stabilizable
e R>0 and Q-NR'NT20 (3.6.2.13)
e (QO- NR'N',4- BR™'NT)

The last expression has no unobservable pole on the imaginary axis. Nevertheless,
observability is not being considered here. That is, all states are assumed to be immediately

available. Furthermore, for the purpose of this research, this problem is assumed to be in the

69




absence of noise. ARE, equations (3.6.1.27), will be solved using MATLAB notation and
variables. The first of these is the same as equation (3.6.2.9) with N =0. The second has the

solution m= (A" - SBR™'B")"(C"Qr - 8d) (3.6.2.14)

When the gain reaches a steady-state value and the closed-loop plant is stable then the
optimal tracker is given by

-m' = (A- BK(®))"m+C"Qr+ Sd
u=-K(o)x+ R'B"(A" - SBRB"Y'C"Qr- R'B7(A” - SBR'B")'sd (3.6.2.15)

The second equation of equation (3.6.2.15), represents the control needed. The first term of
this same equation, represents the feedback, second feedforward or tracking and the third
allows for disturbance. The form of the control is similar to that which would result had the
disturbance been included as part of the B matrix.

Letting the steady state tr_ack and disturbance be represented as,

track = R"'B"(A" - SBR'B")"'C"QOr
and (3.6.2.16)
disturbl= R™'BT (AT - SBR™'B")"'Sd

the state becomes

x'= Ax+ Bu+d = Ax+ B(- K(»)x + track - disturbl) + d (3.62.17)
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Upon substitution for u, this equation can be written as

x' = (A- BK)x + Btrack - Bdisturbl+d = Ax+ f’ (3.6.2.18)

which has the solution of the form
6,

x = exp(A(6, - 6,))%, + exp(A 8,) [exp(A6) fidf  (3.62.19)

)

where A = (A- BK)

The auxiliary signal (the second part of equation (3.6.2.19)) can be integrated to be

o
f= I(epr(ef -0,)f’d8=(f"/A)1-expA(f,-6,) (3.6220)

b

In the infinite-horizon limit, this signal is a constant and is represented by
f(0)= f7/A = A\ (Btrack - Bdisturbl+d) (3.62.21)

The solutions to equations (3.6.2.15) and (3.6.2.19) are easily coded in the program str_Igr.
This code allows one the option: (1).the use of feedforward (tracking) or (2) not to use
feedforward (tracking). |

Function Igr can be used alone or in conjuction with a general calculation of the
optimal feedback for constant gain, first presented by Moerder and Calise [59] based on the
Lyapunov equation. The Lyapunov equation is a variation of the Riccatti equation obtained
by making a transformation of the fundamental matrix. The Lyapunov equation may be
solved using the subroutine lyap.m in MATLAB (Control System Toolbox).The initialization
of the program requires an initial stabilizing output feedback k0, ( this k0 can be provided
by Iqr), the maximum number of iterations N, the magnification a of Ak, and the tolerance.
The weighting Q and R are also inputs to the program. The number of iterations, the
tolerance, and the magnification can determine the successful termination of the program.

If o is “large” the  matrix ‘A - BKC’ may not be Hurwitz. That is, it may not contain
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negative real parts of the eigenvalues. In such cases, the algorithm will terminate with a
warning. To alleviate the problem, decrease a. If the tolerance is very “small” then the
program may terminate before achieving the desired tolerance. In that case, either increase
N or the tolerance.

In the interest of time, that is for a timely completion of this phase of the research,
Igr will be used in isolation of lyap.m. Thus any reference to this function will be
‘commented out’. Refining of the optimal software can be explored in future research. The
advantage of the combination software usage is that quicker satisfying weighting matrices
may be determined.

As a final comment regarding the criterion functional, the system is desired to be
optimal but must be very exact in the sense in which the system is optimal. Mathematical
expressions must be found to measure how the system must be optimal in comparison with
other system. The system response is usually of most interest. The exact form of S and Q
is to be fixed by the designer at the outset. Thus a number is assigned to the response
obtained by each control law u, and the optimum system is that whose control law gives the

minimum cost function. The choice of Q is dictated by the relative importance of each state

over some time interval or [6, < § < @ +] in this case. Fast decay implies large control

or large Q implies large u. The choice of S is dictated by the relative importance of each
state at the final time or designation. The relative magnitudes of Q and R are in proportion
to the relative values of the response and control energy. The larger Q is relative to R, the
quicker the response and the higher the gain of the system.

The calculated thrust is a non-dimensional theta dependent quantity. Carter and

Brient [29], stated that the Tschauner- Hempel vector x(f) described by the Tschauner-
Hempel equations can be obtained from the transformation x(6) = r(8) X (8) (3.6.46)

where X' (@) is the actual relative position of the spacecraft in terms of 6. If the

solution vector to these equations is used, then this would imply that

72




V(@)= r(0)X'(6)+r'(8)X(9)
v(0)-r'(9)X(0)

= X'(0)= 0 (3.6.2.22)
_dX@de .
v(t) = de X'(6)6
. ﬂz
Similarly, and using the fact that 6 = -h—3r2(¢9) (3.6.2.23),
it can be shown that
#4
a(t) = ?{2#(0)#(0)[\:(0)— r @)X}
(3.6.2.24)

¥ %;{r“(e)[a(e) - r"(a)X(e)]- 27 (0)r* 0)(w(8) - ' (0) X (6))}

h2
using again the approximation r(8)=—, (3.6.2.25)
: H

therefore

a(t) = == {2r @)~ r )X O]}
+u{r@[a®) - r'(0) X(©)]- 2r' @) ¥(©O) - ' (9) X(8))}

(3.6.2.26)

From equation (3.6.2.22)

73




a@)=2rX"+rX"+r'X=2r'X'+r'X

(3.6.2.27)
then
y
)= — 2 ! 0 H -r' 0 X 0
a(t)= =~ 2r O[O - r'(0)X( )l (3.6.2.28)
+u{r@)[2r @)X ©)]- 2r @)(v(6)- r' (O) X (9))}
' . : bz”
If equation (3.6.2.25) is not used, but instead h= —a— (3.6.2.29)
then
ud
a(t) = 7{2r2r'(v— FX)+ 2K X - P (v - r X)) (3.6.2.30)

Equation (3.6.2.28) or (3.6.2.30 ) are also programed using MATLAB and is included in the

program str_lqr.

Assuming all states are immediately available and in the absence of noise, a

parametric study will be investigated using various weighting functions. The task then is to

select the combination of values for the state and control weighting matrices which will best

answer questions for a given scenario, while maintaining other mathematical behaviors such
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as positive definiteness and positive semi-definiteness( for purposes of stability). The three
relevant questions the LQR should address are (1) How much control? (2) How much
overshoot? and (3) How much time is needed for convergence? All of which equate to
values needed 'to remove the error. Although the designed matrices were given an out-of-
plane ‘z’ component as input, it was not until Figures 3.6.2.6 and 3.6.2.7 that a ‘z’
component error was inputted. Thus there are no ‘z’ responses for the earlier Figures since
a z response at this point is irrelevant for a coplanar model. A discussion per Figure is
delineated separately. The preliminary results shown here assume the initial LQR correction
begins near perigee, at a true anomaly angle of 45 °. The periodic system matrix appearing
in the Tschauner-Hempel equations is evaluated at that true anomaly angle. If the responses
occur in a relatively short time, it is assumed that this value could be used throughout the
maneuver. For longer time responses this matrix would have to be re-evaluated in a piece-
wise adaptive manner. For all results presented here, the quadratic cost functional with the
infinite time upper bound and N =0 as in Eq. (3.6.2.7) has been selected as the quadratic cost

function.
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Figure 3.6.2.1

Figure 3.6.2.1 will be considered as the reference Figure for the others. The diagonal
elements of the control R and state Q weighting matrices are given the value of ones. The

off diagonal terms are assumed to be zero. The state here is defined as

(x y z x yp 2) wherex isintheradial cross-track direction in-plane, y is in the

along track direction, and z represents out-of-plane displacement. The center of this moving
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coordinate system is taken at the nominal position of any daughter satellite in the orbit. Thus
a displacement of 1 km along track actually represents a displacement of d ;,er-augner + 1 ki1

along track, where d ;, er.dangieer 1 the desired mother-daughter separation distance for this

application.
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Figure 3.6.2.2

The diagonal elements of R are increased to 3. As such, the control effort decreases as

compared with Figure 3.6.2.1. Also some of the responses (velocity and acceleration) appear
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to be slightly more sluggish or slow to respond.
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Figure 3.6.2.3

The penalty on all state components is increased. Some of the overshoots are noticeably
reduced as compared with Figure 3.6.2.1 responses. The responses of the x component of

acceleration and position are much faster. The peak control effort components are an order

of magnitude larger than in Figure 3.6.2.1.
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Figure 3.6.2.4

Now penalties on the y component of the state matrix and also on the y component of the

state matrix are increased 50 fold. The end result is almost an order of magnitude increase
in control effort, and a slight improvement in reducing some of the transient overshoots as

compared with the results in Figure 3.6.2.1.
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Figure 3.6.2.5

In this example, the split weighting strategy is employed. R is penalized more than before,
requiring in some cases almost 4000 sec (twice the time of Figure 3.6.2.1) to reach steady

state; this results in an order of magnitude reduction in control effort u.. Transient responses

are noticeably more sluggish.
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Figure 3.6.2.6

Although the previous results emphasized coplanar type maneuvers, hgre an out-of-plane
error in position of 1 km is now given at the 45 ° true anomaly point, in addition to the 1 km
error along track. The weighting functions are the same as those of Figure 3.6.2.1. This
Figure depicts consistence as it relates to input error. Furthermore, damped simple harmonic

motion (SHM) is demonstrated as predicted by the out-of-plane Tschauner-Hempel equation.
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Figure 3.6.2.7

Figure 3.6.2.7 is a three dimensional depiction of Figure 3.6.2.6. The weighting elements
selected here by no means infer that these are the optimal choices or combination of choices,
only to demonstrate capability and workability.

Preliminary results assume the initial LQR correction begins near perigee, at a true

anomaly angle of 45 °. The preliminary results here validate the controllability and stability
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of the LQR control strategy and verify convergence in a relatively short time interval in
response to an initial displacement. The response time is much shorter than that of Tan, et.
al.[38] or Schaub, et. al.[S1]. Both used a Lyapunov type of approach. Tan applied the
approach to the osculating orbital elements, while Schaub used the mean orbital elements.

3.6.3 Modification to Station Keeping Strategy due to the Earth’s Planetary and
Lunar Perturbations

To understand the effects of Earth’s planetary, and Lunar perturbations, let’s begin
with a description of the software and its inputs. The Ada Simulation Development System
(ASDS)[21] or, more commonly, BG14, has the following environment models available:
Atmosphere, Gravity, Gravity Gradient Torque, Third Body Effects, Tidal Forces due to Sun
and Moon, Solar Radiation Pressure and Solar System Models, including ephemeris and
planet physical parameters. Two ephemeris modeling capabilities exist in ASDS. One uses
an analytical approach to computing planetary ephemerides (Van Flandern), while the other
one uses actual Jet Propulsion Laboratory (JPL) data for the planets and satellites. The Van
Flandern model gives low-precision (1 degree) formulas for geocentric and heliocentric
positions of the Sun, Moon, and planets, which are valid for any epoch within 300 years of
the present. In the JPL version, an ephemeris of the Moon and nine planets has been
numerically integrated from 1411 BC to 3002 AD. A long ephemeris has utility for
comparison with both historical observations and analytical theories. The environment data
set provides inputs as central body and the perturbing forces. It is seen that Central_ Body
= Earth, Third Body_Plantes= Sun and Moon, Gravity_Model=wgs_84 (forces the use of

an Earth fixed system), Gravity(with various order and/or degree) and Solar_Radiation is set
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to either ‘on’ or ‘off’. Note that the solar system model(ephemeris) used is the JPL
Ephemeris unless the date specified lies outside the valid ephemeris dates, in which case Van
Flandern is used.

Higher harmonics of perturbations in three dimensions, can be seen from the more

general form for the Earth’s gravitational potential which can be written as

k
Gm = I,
V(rg,8)=—1-) Jk(“i) P (cosp)
r koo r
m — r )\
+ ———Z Z (—eq—) P’k(cosgo){Cjk cosj9 + Sy sian}
r =2\ 7
J, isdefinedas J, = —‘C Ok .Values of the various coefficients are obtained from satellite

observations. The k’s correspond to degrees, whereby the j’s depict the order. Asthe degree
and order increase, the order of magnitude effect of each harmonic on satellite motion

decreases.
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Figure 3.6.3.1(a) 30 Day Time History of Separation Distance
between Mother and Daughter Satellite Non-Keplerian Orbit

From Figure 3.6.3.1(a), the degree as well as order was set to equal 20. These higher
harmonics seemed to have negligible effect in comparison with Fig 3.4.1(b), for a satellite
with an initial separation of 400 km for a 30 day orbit.

On the other hand, higher harmonics do contribute, although slightly, for orbits in
excess of 100 days. Here the question of collision is answered; that is, if no other corrections
are given, “what happens?” The effects of including these higher harmonics (20 by 20)
delays the collision time by 25 days, otherwise collision time would have been reached at

approximately 125 days, instead of the now 150 days. See Figures 3.6.3.1 (b and c).
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In summary, for relative short orbit periods (i.e. 30 days = 236+ orbits), the Earth’s
planetary and Lunar perturbation exhibited negligible effect. For higher harmonics, the
Earth’s planetary and Lunar perturbation became noticeable for orbits of 100 days or more.
It is also shown that higher orders and degrees of perturbation increased the lifetime of the
satellite by prolonging the time before zero separation is reached. The shifting of lines of
apsides for this elliptical orbit, showed an order of magnitude improvement in reaching the

time of collision, as compared to that of Badesha’s circular orbit [32].
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IV THE IMPLEMENTATION OF MAINTAINING CONSTANT

DISTANCE BETWEEN SATELLITES IN ELLIPTIC ORBITS

4.1 INTRODUCTION

The scientific objectives of the Earth observation program are becoming more
autonomous and more ambitious; this has created needs for innovative technical approaches
to achieving and maintaining constellation and formation flights of spacecraft. The trend to
develop small low-cost spacecraft has led many to recognize the advantage of flying multiple
spacecraft in formation to achieve the correlated instrumentation formerly possible only by
placing many instruments on a single platform.

A study was conducted of proposed NASA and ESA constellation configurations
which would measure and study upper atmospheric phenomena. The Auroral Cluster
(Multiscale) System, the Distance Measurement System, the Orbiting Interferometer System,
as | suggested by NASA for LEO missions together with the Solar Stereo System in
heliocentric orbit were all considered as possible baseline or “strawman” configurations. In
addition information was also obtained from the ESA web page on the proposed ESA Cluster
mission with the objective of determining physical processes involved in the interaction
between the solar wind and the magnetosphere by visiting key regions such as the polar cusps
and magnetotail.

After reviewing the candidate configurations it was decided to select the Auroral
Multiscale Mission (AMM) as a baseline or “strawman” model for this research: a brief
description and sketch of this system is given in Fig.4.1 and Table 4.1. Initially for this study

the “strawman” configuration would be based on four spacecraft in the same plane
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Fig. 4.1 Auroral Multiscale Mission System

Table 4.1. Strawman Configuration

Mission Multi-point 3-dimensional data collection of auroral phenomena
Orbit 600x8000 km, 83° inclination
Launch Vehicle

Taurus (2110 vehicle), Insertion Mass of 465.5 kg, argp=203.1°

Spacecraft Size

40 inch diameter (across flats)

Spacecraft Mass

90 kg each

Science Payload

Ion/Electron spectrometer, UV Auroral Imager, Magnetometer, Electric
Fields (3-axis)

Position Knowledge

GPS, Knowledge to 100 meters (3 sigma)

Attitude Knowledge

0.01° Star Tracker (referenced to magnetometer), star-tracker implementa-
tion. Spinning sun-sensor / magnetometer provides coarse attitude.

Power

Solar array capability: 40 watts orbit average power
Energy Storage: Dual IPACS Flywheel momentum bias system used for both
power and attitude control
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principally along the orbit track.

The perigee altitude is selected to

V=8.771 km/s

be 600 km, the apogee altitude is

selected to be 8000 km. and the

Perigee

Apogee 517.28 nominal separation distance
Ved. 516.74 between two adjacent satellites is
515.66 km. taken to be 500 km Without any
perturbation or any control, the
Fig.4.2 Variable Velocities & Phase Distances

velocity at perigee and apogee as

well as the separation distances are shown in Fig.4.2. From Fig.4.2 it is seen that the
separation distances at perigee are more than twice the separation distances at apogee. To
maintain constant separation distance in such an orbit, it would be necessary to correct the
orbit continuously; the tremendous amount of energy required makes this strategy unfeasible.
A novel idea for implementation of constant separation distances for the AMM
mission is developed”. The four satellites are launched by a single vehicle; the method to
distribute the satellites into their
positions using the least maneuver

energy is given in this chapter.

Because of various perturbations

(mainly caused by the J, effect) and/or
initial errors, the separation can not be

maintained without control. There are

several mathematical models that can be Fig.4.3 Angle Between Orbits of Two Satellites
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used to design the controllers. The Clohessy-Wiltshire equations? (sometimes referred to as
the Hill-Clohessy-Wiltshire equations® ) assume circular orbits and a spherical Earth model,
and the equations of motion of the orbiting spacecraft are linearized relative to the rotating

frame of the reference spacecraft. Here, however, the orbit is elliptic.
In this chapter by controlling the osculating orbital elements the constant separation

is successfully maintained. The advantage is taken of celestial mechanics insight to avoid the
correction of orbital elements at ill-suited times. Since the model involving the osculating
orbital elements is inherently nonlinear and time-variant, control logic based on a Lyapunov
function is applied. The control is much simpler than the one of Schaub et al *!, therefore it
is easier to implement in engineering practice. All simulations are performed by MATLAB

and the BG14 orbital propagator 2'.

4.2 REVIEW OF STRATEGY FOR MAINTAINING DISTANCE IN ELLIPTIC ORBITS

In order to maintain a constant distance between two satellites in elliptic orbits, the
semi-major axis of the orbit of the second satellite should be shifted by a very small angle
( something like 1.37° ) with respect to the orbit of the mother satellite in order to achieve
the constant separation distance. Both orbits are in the same plane (Fig.4.3). If there are two
satellites flying in the orbits shown in Fig.4.3, both in the counter clockwise direction, at
exactly the same time that they arrive at their perigees and apogees, respectively, the distance
between the two satellites is defined as the geometric distance, roughly the distance caused
by the shift of the semi-major axis of the orbit; if the satellites are flying in exactly the same
orbit (shown in Fig.4.2), the distance between the adjacent satellites is defined as the phase

distance, i.e . the distance accounted for during the time in which the first satellite will reach
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the second satellite’s current position. From Fig.4.3, it is seen that the geometric distance
at the perigee is smaller than the one at the apogee. The strategy here is that if the phase

distance is compensated by the geometric distance, then the resulting separation distance

between the adjacent satellites is maintained to be essentially constant®. The details of the

calculation are presented as follows:
From Fig.4.3, if the angle between the two semi-major axes is «, the distances

between satellites 1 and 2 at perigee and apogee (the geometric distances) are

2(R,+perigee altitude)sin(%) and 2(R,tapogee altitude) sin(%)

respectively, where R, is the radius of the Earth. Let the phase distances at perigee and
apogee be Pp and Pa, respectively (Fig.4.2), We try to make the resulting distance at apogee

the same as the one at perigee, e.g. 512 km. i.e.

2(R, +perigee altitude)sin(%)+Pp = 512 (1)
2(R,+apogee altitude)sin(%)+Pa = 512 )
From Fig.4.2, it is noticed that
Pp _ 51728
Pa 251.13 @)

The solution of equations (1)-(3) is & =1.37°, Pp=344.705 km, Pa=167.295 km. That means,

satellite 1 arrives at its own perigee (or apogee) 39.5 seconds later than satellite 2 does.
An example of the constellation in an orbit described above, with nominal separation

distance of 500 km., is given here. The simulation is done by MATLAB and BG14; the

simulation results are identical, shown in Fig. 4.4, which shows the simulation results for 16
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Keplerian orbits. The maximum
515

510’“" distance, 512 km, occurs at
o perigee and apogee; the minimum
o distance, 488 km, takes place
N between the perigee and apogee.
Without  perturbations  and
ax0

" subsequent control this distance

485 .

R S R e

would be maintained forever; the
Fig.4.4. Separation Distance, Keplerian Orbit drift from the nominal value, 500

~ km, is about +2.4%.
4.3 INITIAL SEPARATION DEPLOYMENT

It is assumed that the four satellites are launched by a single vehicle, see Fig.4.1;
therefore, it is important to study the method to separate the satellites using the least
maneuver energy. After comparison of several maneuver methods, the following approach
was selected, because all the work done by the thrusters is used to augment the energy which
is required from the transient orbit to the final orbit.

There are two tasks for initial separation: one is to cause a shift in the angle (about
1.37°) between the semi-major-axes of the orbits of the adjacent satellites; the other is to
create a phase difference, i.e. according to reference 1, the second satellite arrives at its
perigee 39.5 seconds earlier than the first one does. It is well known that if a satellite travels
in a circular orbit, its speed is the same at any point; and if the satellite is accelerated to a
larger speed (V) along the track at some point, say A, then the satellite will go into an

elliptical orbit, whose perigee is A, and the apogee depends on the speed V. Therefore, the
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‘ four satellites are launched by a single vehicle into a circular orbit 600 km from the Earth’s
surface with a required ascending node and inclination angle. From this orbit, if any satellite
is accelerated to a larger speed along the track, its perigee must be 600 km.; and it is easy to
cause a shift in the angle between the semi-major-axes of the orbits of the adjacent satellites.

® The four satellites are traveling in the circular orbit (orbit 5 in Fig.4.5), the speed
of this orbit is 7.558 km/s. When they move to the position of the required argument of
perigee of the mother satellite, the mother satellite will be released and accelerated along the
track to 8.770 km/s, the perigee speed of the final orbit. Thus, the mothef satellite will travel
in an orbit whose perigee is at this point, 600 km from the Earth’s surface, and the apogee

is 8000 km from the Earth’s surface (the orbit 1 in Fig.4.5). The other three daughter

7
15%10 , . ,

0.5+
474s

0s,10081s

10428s
-0.5}-

-2 -1.5 -1 -0.5 0 0.5 1 1.5
x 107

Fig.4.5 Deployment of the Four Satellites in Constellation

the unit for both coordinate axes is meter. s’s inside the figure mean seconds, the position 10981 s is identical with the point
0. but at point 0. all four satellites are joined together, at 10981 s they are separated 500 km. apart.
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satellites are still moving in orbit 5 at this moment.

@ 22.56 seconds after the release of the mother satellite, the three daughter satellites
have swept through 1.37° in the circular orbit. At this moment, if the first daughter satellite
is released an& accelerated along the track also to 8.770 km/s, the first daughter satellite will
travel in an orbit whose perigee is at this point, 600 km from the Earth’s surface, and the
semi-major-axis is 1.37° apart from the one of the mother satellite. At this moment ,
however, the mother satellite already left its perigee 22.56 seconds earlier; that means the
phase of the first daughter satellite is 22.56 seconds later than the one of mother satellite. But
it is required that the phase of the first daughter satellite be 39.5 seconds earlier than the one
of the mother satellite. Therefore we let the first daughter satellite travel in a transient orbit
whose period is 22.56+39.5=62.06 seconds less than the period of the mother satellite’s

orbit. The period of the mother satellite’s orbit is
T=27y/a?/y=10981.31s
where a is semi-major-axis of the mother satellite’s orbit; y, the gravitational constant,

=3.986005x10", so the period of the first daughter satellite’s transient orbit T,, its semi-

major axis a, and the speed v, at its perigee are

. L2
T,=T-62.06=10919.25 s a1=(Ely2)3=10637.867 km
T
c¢,=a,~(perigee +R )=10637.867 -600-6378.137=3659.73 km.
e =c /a,=0.344028552  b'=al-c,  b,=9988.523 km. )
b,k
p,=bila,  h=pY y, S =8.762 kmJs

al\1-el(1-e,)

where R, is the radius of the Earth. So the first daughter satellite is accelerated to 8.762 km/s
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instead of 8.77 km/s. Thus it will travel in a smaller orbit (orbit 2 in Fig.4.5), whose semi-
major-axis is 10637.867 km., and period is 10919.25 seconds. That means the first daughter
satellite returns to its perigee in 62.06 seconds less than the mother satellite, but the ﬁrst.
daughter satellite is released 22.56 seconds later than the mother satellite, so its phase is
39.50 seconds ahead of the mother satellite, i.e. the phase distance. Once the first daughter
satellite returns to its perigee, it will be accelerated again until the speed reaches 8.770 km/s.
So it will finally travel in an orbit with the same orbital elements as the mother satellite, i.e.
the semi-major-axis, eccentricity, inclination, ascending node, except for the the argument
of the perigee (the difference is 1.37°), and the mean anomaly (the difference is nx39.5).

| @ Similarly, 22.56 seconds after the release of the first daughter satellite, the
remaining two satellites have swept through another 1.37° in the circular orbit. At this
moment the second daughter satellite is released by using the same method as in Egs. (4),
ie., @ T,=T,-62.06, ® Calculating a, from T,, ® Calculating ¢, from a,, @ Calculating e,
and b, from a, and ¢ , then p, and h,, ® Eventually v, =8.754 km/s. So the second daughter
satellite is accelerated along the track to 8.754 km/s. In this way the second daughter satellite
will travel in an orbit (orbit 3 in Fig.4.5) which is 1.37° away from the first daughter satellite
and 39.50 seconds in phase ahead of the first daughter satellite. When the second daughter
satellite returns to its perigee, it will also be accelerated to 8.770 km/s.

@ Similarly, 22.56 seconds after the release of the second daughter satellite, the last
daughter satellite is released and accelerated along the track to 8.746 km/s so that the last
daughter satellite will travel in orbit 4 in Fig.4.5. It will also be accelerated to 8.770 km/s
when it returns to its perigee.

The simulation results are shown in Fig.4.5, where the unit for both coordinate axes
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Table 4.2.

They Should be Accelerated, Respectively.

Total Av’s Required for the Four Satellites and the Moments when

HE _FIRST MANEUVER | THE SECOND MANEUVER
Time.sec| Av required, m/s Time, sec.  |Av required, m/s
Mother Sat. 0 8770.1-7557.9=1212.2 10981.31 0
Daughter Sat.1 | 22.56 | 8762.0-7557.9=1204.1 | 10941.81 8770-8762=8.06
Daughter Sat.2 | 45.12 | 8753.9-7557.9=1196.0 | 10902.31 8770-8754=16.2
Daughter Sat.3 | 67.68 | 8745.6-7557.9=1187.8 | 10862.81 8770-8746=24.4
(X0 | is meter, s’s inside the
figure mean seconds,
T 1.e. the time for release
4t 1 of the mother satellite
, is 0 second, before that
all four satellites are
2 ‘ packed together in a
1+ 1 single launch vehicle.
. The orbital period of
% 2000 4000 5000 8000 10000 12000
the final orbits is

Fig.4.6 Distance Between Mother and First Daughter Satellites

10981.31 seconds, so the

position of 10981 s is

identical with the point of 0 second, but the satellites are already separated 500 km apart.

The history of the distance between the mother satellite and the first daughter satellite with

respect to time is shown in Fig.4.6, and the total Av required for the four satellites is shown

in Table 4.2.
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4.4 STATIONKEEPING MAINTENANCE

The analysis to this point is based on the Keplerian orbit theory'?, i.e. there is no
perturbation. The orbital elements are very sensitive to the initial condition. Suppose at the
time t=10981.31 sec. the mother satellite orbit’s semi-major-axis is along the x axis, and its
semilatus rectum is along the y axis, then for this problem, x should be 6978.137 km, y=0,
dx/dt=0, dy/dt=8.77km/s; for the first daughter satellite, x=6962.313 km, y=0.49977km,
dx/dt=-0.51917km/s, dy/dt=8.753km/s. If, somehow, possibly due to perturbations, the first
daughter satellite has a small initial velocity error so that for the first daughter satellite
dx/dt=-0.52842km/s, dy/dt=8.787 km/s then the distance between the mother satellite and
the first daughter satellite vs. time is shown in Fig.4.7. It is obvious that the distance can not

be maintained to be around 500 km., and the distance is diverging. Even though the first and

550 . second maneuvers are
performed so perfectly
that positions and
velocities after the
second maneuver are
exactly as required,
with perturbations

(mainly J,) the distance

500 £12 km. can not

maintained forever (as

Fig.4.7. The Distance (km) between Adjacent Satellites vs  indicated in Fig.4.4).
Time (sec.) with Small Initial Velocity Error.
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Fig.4.8 is the 30 days
simulation result of the
distance between
adjacent satellites

using the BG14. From

Fig.4.8, it is seen that
with perturbations a

secular drift appears in

gravity degree 4
solar r.ladiaﬁon

the transient response;

360
0

) 10 15 20 25 30 L.
Time(days) by the thirtieth day the

Fig. 4.8. The Distance between Adjacent Satellites with Perturbations  distance oscillates around
405+30 km. Therefore, some kind of control must be applied to the formation flight system.
There are many papers dealing with formation control’"¢"*”2; most of them are approaches
feeding back position and velocity vector errors. In this paper a feedback law in terms of
osculating orbital elements is studied. By comparing the situations depicted in Fig.4.4 and
Fig.4.8, we can develop a control strategy so that the control effect in the presence of
perturbations (including J,) is spent principally to remove the secular drift of the separation
distance (Fig.4.8), and minimally to remove the amplitude of the small oscillations (Fig.4.4).
This can be accomplished with the feedback of the variations in the osculating orbital
elements of the daughter satellite from some nominal values. With this philosophy, control
energy can be conserved as compared with the other traditional feedback strategies, e.g.
feedback of position and velocity error components.

Gauss’s variational equations of motion provide a convenient set of equations relating
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the effect of a control acceleration vector u to the osculating orbital element time

derivatives®*

a = (2a’lh) (e sinfu, + (p/r) uy) (5a)
e = [psinfu, +((p +r)cosf+re) uglh (5b)
i = [(rcosO)/ h]u, (5¢)
Q = [(r sin®)/(h sinv)] u, (5d)
o1 ) in Ocos1

w=z[—pcosfur+(p +r)s1nfue]—lil£§-uh (5¢)

M=n +[n/(he)l[(pcosf-2re)u,~(p +r)sinfuy) 5H

where a is the semi-major axis; e is the eccentricity; 1 is the inclination; Q is the longitude
of the ascending node; w is the argument of the perigee, M is the mean anomaly. We define
x=(a e 1 Q w M)’ as the state variable vector and u=(u, uy u,)’ as the control acceleration
vector, written in the Local-Vertical-Local-Horizontal frame, u, points radially away from
the Earth, u, is aligned with the orbit angular momentum vector, u, is orthogonal to both u
", and u,. fis the true anomaly, r is the scalar orbit radius, p is the semilatus rectum(see

Eq.(4)), 6=w+f, h, n and the mean angular velocity n are

h=/py n=y1-e? n=\y/a’

Incorporating the J, influence, Eq.(5) can be written as >

xX=B(x) u+D(x) (6)

where

R R R
D(x)=[0, 0, 0, —3J2(—“)2ncos 1, 2Jz(—")zn(scos%—1), n+312(—e)2nn(3cos2x-1)]f @)
2°p 4" p 4 p
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and

[ (2a%esinf)/h (2a’p)i(hr) 0

(psinf)/h [(p tr)cosf+rel/h 0
B(x)- 0 0 (rcos 0)/h )

0 0 (rsin 0)/(hsinv)
~(p cosf)/(he) [(p+r)sinf]/(he) —(rsinOcosi)/(hsinti)
(N cosf-2re)/(he) —[n(p+r)sinfl/(he) 0
Substituting the orbital parameters used in this paper into Eq.(7)

D()=[0 0 0 -5.218x10"* -1.982x107 n+1.919x1077Y" )

The elements of D are very small, and if the formation flying system is under control the
orbital parameters should not drift far away from the nominal values; thus D(x) should be
very close to Eq.(9). Therefore, D(x) is treated as a minor disturbance instead of part of the
plant matrix.

From Eq.(8), it is seen that the system is nonlinear and time variant, so a control law
based on a Lyapunov function is applied. If the osculating orbital elements of the mother
satellite are x,, the required osculating orbital elements of the first daughter satellite are x;,
then

Ax=x,-x, ie.

x,=x, +Ax (10)

Assuming that the actual osculating orbital elements of the first daughter satellite are X,

then

Ox =X,,7X, ie. x

24~ %2 +Ox (11)
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We define a Lyapunov function as

V=%(a +he ™) - 0x T Ox  where a>0, b>0, >0, - V>0 (12)
then
Vo= -%bae 3% Tdx +(a+be *)Ox T 5% (13)
where
dx =x,,-x,=x,,~x, ~Ax see Egs.(11) and (10)
0% =x,,%, note that Ax does not vary with time.

substituting Egs.(6), (7) and (8) into the above equation, and noticing that there is no control

for the mother satellite, we get

8x=B(x)u + [D(x,;)~D(x,)] (14)

Since in Eq.(7), J, and R, for mother and first daughter satellites are the same, p, n, 1, and 1)
are almost the same, and D(x) itself is very small, therefore, D(x,,)-D(x,) in Eq.(14) can be

ignored. If we select

u=-BB'B)'B "o (15)

where f is a scalar value used to adjust the feedback gain, and substituting Eq.(15) into

Eq.(14), we get

& = -BB(B"B)'BTdx (16)
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After substituting Eq.(16) into Eq.(13) there results,

Vv o= —%bae ““Ox TOx-P(a+be *)dx TB(BTB)'B Tox (17)

= @=B(B'B)'B"is symmetric and semi-positive definite, and Rank(®) < Rank(B), here B
is 6x3, .. the eigenvalues of @ are 1,0, 4,20, A,>0, 0, 0, 0. There must be an orthogonal

matrix so that

A, 0 0 0 0
0 A, 0 0 0 0
O=TATT  where A=TT®T= 0 0 4 0 0 0 (18)
0 0 0 0 0 o0
60 0 0 0 0 O
0 0 0 0 0 o0
Eq.(17) can be written as
V=-0xT 05b0e ™ TITT dx - dx T P(a+be “)TAT Tox
= - 0T [T 0.5b0e I TT + T B(a+be ™)AT "}0x (19)
= - Ox T [0.5bcte ™I + P(a+be “)A]T Tox
=-&TTETT &x
where
E=[0.5b0e "I + P(a+be “)A] (20)
ie.
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0.5bce " +P(a+be ™A, 0 0 0 0 0
0 0.5bcte " +P(a+be A, 0 0 0 0
s 0 0 0.5bcte "+ P(a +be "1, 0 0 0
0 0 0 0.5boe ™™ 0 0
0 0 0 0 0.5bae ™ 0
0 0 0 0 0 0.5b0e ™™

Since a>0, b>0, «>0, B>0, and A,>0, A,>0, A,>0, therefore = is positive definite, and so is

TET™. If 6x #0, then 6x" TETT 6x >0,

iD(x,) Ax W V=-&TTET T8 <0
Mother (3= [ H%
’ x: That means the control law described by
D(x;) ; Eq.(15) can make the formation flight
Daughter i__“> J ] -0x  system asymptotically stable. It is obvious
B that the above analysis is also suitable for
N

\_u_m, B P)-lBT the control of the distance between the

Fig.4.9 Control System Diagram daughter satellites, e.g. for the control of

the second daughter satellite to maintain the
distance between it and the first daughter satellite, just replace x,, the osculating orbital
elements of the mother satellite, by X ,, the requiredosculating orbital elements of the first
daughter satellite; replace x,by x; the required osculating orbital elements of the second
daughter satellite, and replace x,4 by x ;4 the actual osculating orbital elements of the

second daughter satellite, in Eqs.(10) and (11). The diagram of the control system is shown

in Fig.4.9.
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Table 4.3. Initial Conditions for Mother and First Daughter Satellites

Initial Mother Daughter Sat.1's Daughter Sat.1's | dx
Condition | Satellite Required Elements | Actual Elements
a km -10678.137 | 10678.137 10677.137 -1
e 0.34650239 | 0.34650239 0.346534844 0.000032453
1 deg. 83 83 82.9985 -0.0015
Q deg. 10 10 10 0
w deg. 10 11.37 11.37 0
M deg. 0 0+39.5xn 39.5xn 0
x 10°*
4.5 NUMERICAL SIMULATIONS
1.0678} ¢
: With various perturbations,
: including atmosphere drag, solar
1.06781 pressure, the Earth’s magnetic field,
I perturbations from the Moon and other
x 10* : s
1.0677 planets, and J’s effect, where n=2 is
0 5 10 15
0.3466 the most important contribution, the
- osculating orbital elements do not
0.3465¢"
remain constant. The values of «, the
0.3465¢ . angle between the semi-major axes of
hY
0.3465 - .t " A oo j the adjacent satellites, and the Pp, the
. I -
'i ¥ % 10° phase distance (see Review section) at
0.3465
0 5 10 15 perigee should be modified when a or

Fig.4.10 Transient Responses of the Semi-major

Axis and the Eccentricity

e is changed. The initial conditions for

the mother and first daughter satellites

are listed in Table 4.3. When p=2x10"* (see Eq.(15)), the transient responses of the semi-
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major axis and the eccentricity for ten orbits are shown in Fig.4.10; the difference of the

osculating orbital elements between the mother and the first daughter satellites as well as the.

control efforts of the first daughter satellite are shown in Fig.4.11. From these figures it is |

seen that the osculating orbital elements converge smoothly; the maximum control efforts
(see Fig.4.11, g~I) are less than 10" m/s?, e.g. if the mass of the satellite is 100 kg., the
maximum control is less than 0.01 newton (it is quite small). For a long lifetime satellite
formation flight, this should be reasonable. The main purpose of this study is to maintain the

distance between adjacent satellites; the distance response with initial error and various

-5 -4
1 o X 10 15X 19
km
0 \/\_/\va\—'w— 10 c. inclination, deg.
0.5}| a. Semi-Major Axis -2 S
b. Eccentricity
-4 0
orbit orbit orbit
% 5 10 % 5 10 o 5 10
4
1 x10 -1.365 -1.285
0 d. Ascending Node e. Argument of f. Mean Anomaly, deg.
-1.37} Perigee, deg. -1.29
-1
2 -1.375 -1.295
Latitude, deg. 138 13
35 5 10770 5 10 0 5 10
-5 -5 -5
10 x 10 5 x 10 6 x 10
. Control 1
9 h. Control 2 4! i Control 3
5 newton/kg newton/kg
0 2
0 newton/kg 0 WWWWM
g 5 10 0 5 TR 5 "~ 10

Fig.4.11. Difference of Orbital Elements Between Adjacent Satellites, and Control Efforts
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515 K- . ‘ ' perturbations for 30 orbits is shown in

510} 1 Fig.4.12. By comparing the situations

505

depicted in Fig.4.4 and Fig.4.12, we can
500

“ ‘ see that in Fig.4.12, the initial error of the
495

o distance of the daughter satellite is

a5 gradually diminishing, after several orbits,

5 10 15 20 25 omit 30

the distance is oscillating around 500+12
Fig.4.12 Distance Response for 30 Orbits  km., just like the situation in Fig.4.4, which

is ideal stationkeeping, without initial error or perturbation. From Fig.4.12 it is also seen

that although the control effort is 15 x 10’ m.

small, it can perfectly compensate the 11

perturbations (mainly J, effect). The 0.5¢

distribution of the adjacent satellites O :
at various times for the eleventh orbit 0.5

At
is shown in Fig.4.13.

-1. : :
5—2 -1 0 1
x 10'M.

4.6 CONCLUSIONS Fig.4.13 Distribution of Adjacent Sat.

A strategy for maintaining separation distance between satellites in a coplanar
elliptical orbiting constellation is developed. This chapter studies the implementation of this
strategy. This strategy would be implemented by two maneuvers that would cause a small
angular shift in the directions of the semi-major axes with respect to the semi-major axis
direction of a “mother” or reference satellite which is also included within the constellation,

and a certain phase difference between adjacent satellites. With this approach for Keplerian
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type orbits and nominal alignment of the satellites along the orbit track, the separation
distance between adjacent satellites remains within a few percent of the nominal separation
distance. The maneuvers are perforr;led at the perigee point in the orbit; for a representative
strawman configuration force-impulse requirements are within the limits for proposed pulse
plasma thrusters'. It is clear that the over-all propulsion requirements would be far less than
for the original situation in a Keplerian orbit without the semi-major axis angular shift
maneuver. The initial separation strategy given in this paper results in the minimum
maneuver energy, since the work done by the thrusters is all used to augment the orbital
energy.

For stationkeeping, a control law based on the feedback of the tracking errors in the
osculating orbital elements instead of feedback of the traditional Cartesian position and
velocity errors is presented. One of the benefits of this feedback law is the removal of only
the secular drift caused by the perturbations. Therefore, this kind of control can save energy;
another benefit is that the orbital elements which do not have tracking errors are kept
relatively close to the desired values during the maneuver.

Since the model is nonlinear and time-variant, the control law is based on a Lyapunov
function. A unique Lyapunov function is given in this paper, based on which a control law
is established, and the asymptotic stability of the formation flight system is strictly proven.
The control law is quite simple, so it is easy to implement in engineering practice.

The preliminary analysis reported here could be extended to more complex
geometrical configurations such as a triangular shaped constellation confined to the orbit
plane, a double pyramid configuration with three spacecraft in the common bases of the

pyramids nominally in the orbit plane and two spacecraft at the vertex points of the pyramids
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out of the orbit plane of the base-plane spacecraft. Another configuration currently proposed
would involve four in-plane spacecraft each at a vertex point of a trapezoid. For the more
complex in-plane formations both along track and radial force (thrusters) would be required;
for the out-of-plane double pyramid, normal forces would have to be applied to the

spacecraft at the tips of the pyramids.
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V. GENERAL CONCLUSIONS AND RECOMMENDATIONS

A strategy for maintaining separation distance between satellites in a coplanar
elliptical orbiting constellation has been developed. This strategy can be implemented by
force-impulse maneuvers that would cause a small angular shift in the direction of the semi-
major axes with respect to the semi-major axis direction of a “mother” or reference satellite
which is also included within the constellation. With this approach for Keplerian type orbits
and nominal alignment of the satellites along the orbit track, the separation distance between
adjacent satellites remains within a few percent of the nominal separation distance. If the
maneuvers are performed at the perigee and/or apogee points in the orbit it is seen for a
representative strawman configuration that force-impulse requirements are withiﬁ the limits
for proposed pulse plasma thrusters.

In the presence of perturbations mainly attributed to the first order effects of the
Earth’s oblateness for the highly elliptical strawman configuration orbit the results are
critically dependent on the amplitude and the numerical accuracy in calculating the semi-
major axis shift angle for a nominal along track separation distance. Without subsequent
corrections a secular drift is observed in the time history of the separation distance and as the
time increases collision or near collision situations can exist.

Additional feedback type of correctional control is recémmended to prevent secular
drifts above a certain level. Two types of stationkeeping feedback control techniques are
considered here: (1) an application of linear quadratic regulator (LQR) theory based on etrors
in position and a piecewise adaptive application of the Tschauner-Hempel equations of
motion as developed for elliptical orbits, and (2) also based on a Lyapunov function using
osculating orbital elements. For the Lyapunov approach the asymptotic stability of the
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closed-loop system model is strictly proven. In order to preserve stationkeeping fuel, the
feedback type of control should be initiated only when the errors reach a certain threshold:

A preliminary deployment strategy is introduced based on near Hohmann-type of
transfer orbits. Deployment of the strawman constellation configuration can be achieved in
one orbit. This technique was selected because all the work done by the thrusters is used to
augment the energy which is required from the transient orbit to the final orbit, resulting in
near minimum maneuver energy.

The preliminary analysis reported here could be extended to more complex
geometrical configurations such as a triangular or trapezoidal shaped constellation nominally
located within the orbital piane, or a double pyramid configuration with the three spacecraft
in the common bases of the pyramids nominally in the orbital plane and the two spacecraft

at the vertex points of the pyramids out of the orbit plane of the base-plane spacecraft.
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VI. IMPLICATIONS FOR FURTHER RESEARCH

1. Further Parametric Studies

The results of the first year will be reviewed and extensions implemented, in particular the
completion of deployment maneuvers based on the solution to the nonlinear two point
boundary value problem (TPBVP) following Pontryagin’s principle. This work is in progress
at the end of the first year, but final numerical results have not been reported in this volume.
The parametric trade-off studies will be extended to study the effectiveness of both
aerodynamic drag forces and solar radiation pressure forces for formation control and also,
possibly, for attitude control. A key parameter in this study will be the ballistic coefficient
of each satellite in the constellation, which could be deliberately altered by the deployment
of extendible vanes from some or all of the satellites. With such systems the use of hybrid
control strategies, including combinations of active (thrusting) control as well as the semi-

passive control afforded by the orientation of the vanes, can be simulated and evaluated.

2. Implementation of Potential Methods to Maintain the Formation.

A study can then be initiated to compare full active propulsion techniques with active
propulsion techniques assisted by aerodynamic / solar radiation pressure induced forces.
Among full active propulsion candidates are: Pulse plasma thrusters (PPT’s), vaporizing
ammonia, resistojets - based on ammonia or hydrazine, and micro - propulsion systems.
Aerodynamically / solar pressure assisted systems could consist of rotating (movable) drag
panels for cross orbit track and along the track or a combination of PPT’s for along the track
and aerodynamic / solar pressure panels for cross orbit track.
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3. Use of Aerodynamics / Solar Pressure with a Deployable Tether

The concept of using rotating aerodynamic drag / solar pressure panels pulling against the
tether to maintain cross track positioning could be initiated. HU group has many years
experience with the analysis of orbiting tethered systems (Phase A and B of Tethered Shuttle
Sub-satellite System for NASA and Ball Research, followed by several years of studying the
proposed orbiting tethered antenna / reflector system for AFOSR). A number of conference
and journal publications have been prepared by HU. The introduction of the dynamics
associated with a deploying or retrieving tether into the constellation system dynamics would
involve additional modeling and simulation requirements which would need to be added to
the existing software. Initial tether modeling could be based on a relatively short tether
assumed to be massless with a concentrated end mass representing the panel. Later on
modifications could account for the effects of distributed mass along the tether, a much more

complex modeling problem.

4. Continuation of the Use of Aerodynamic Control with a Deployable Tether.
Task 3 could be continued to include more complex tether modeling as required. Different

parametric studies would be conducted.

5. Analysis of Fixed Formation Flying Based on A Solid Boom.

The solid boom could represent an ultra violet hardened tether, a miniature Fairchild type
boom, an ultra thin “scissors type” boom, or a thin “tape measure” type boom. The use of
such a boom would also be accompanied by solar radiation induced forces and torques in the
presence of associated thermal deflections, which may be important depending on the type
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of boom, boom thickness, and material and cross sectional characteristics.

6. Analysis of Spinning Formation Flying Configurations.

The configuration could involve subsatellites as end bodies connected by a flexible boom or
tether. In the 1970's rotating cable connected two-end mass configurations were studied with
the aim of providing a certain level of gravity for long duration manned spaceflight
applications. This concept can be revisited as a means of stabilizing a spinning cluster
satellite configuration. In addition to the study of the complex system dynamics (especially
if the dynamics of the end bodies are considered), a study of the effect of using different

materials such as dental floss type material, Kevlar, or stainless steel should also be included.
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